A proposed hybrid cryptography algorithm based on GOST and salsa (20 (original) (raw)

2020, Periodicals of Engineering and Natural Sciences

Security concepts are frequently used interchangeably. These concepts are interrelated and share similar objectives for the protection of privacy, credibility, and access to information; however, there are some slight differences between them. Such variations lie mostly in the subject matter approach, the approaches used, and the focus fields. With the intention of protecting data in contradiction of unauthorized or unintentional disclosure, cryptography is used during transit (electronic or physical) and when data is stored. In the course of the past few years, some block ciphers and stream ciphers have been proposed. These block ciphers take encryption method that uses Substitution-Permutation and Feistel network structure while stream ciphers choose a onetime method. GOST encryption is based on the confidentiality of the secret key. However, it leads to the same ciphertext being generated when the encryption program is used with the same key for the plain text. Reproduction of messages can thus easily be identified by an opponent that is a weak link in any communication. In this paper, proposed a hybrid encryption method based on GOST block cipher and Salsa stream cipher to provide proper security with as high hardness randomly enhances the five standard tests and modifies key schedule as secure operations. The downside of the GOST algorithm is a simple key schedule so that in certain circumstances be the weak point of the method of cryptanalysis as related-key cryptanalysis. However, this resolved by the proposed method by passing the keys of GOST to Salsa stream to have the right combination and more robustness security. Its need for 2 256 probable keys to breaking keys that, because of its uncomfortable procedure in this situation, is to be not used brute force attack. Correspondingly, five standard tests successfully surpassed the randomness of a proposed method.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.