IRJET- A Review on Nonlinear Seismic Response Analysis of an Innovative Steel-and-Concrete Hybrid Coupled Wall System (original) (raw)
Related papers
2020
This may be a review on the paper which studies the seismic response of an innovative hybrid coupled shear wall (HCW) system, obtained through the connection of a reinforced concrete (RC) wall to two steel side columns by means of steel links. This structural solution is conceived to take advantage of both the stiffness of the RC wall, required to limit building damage under low-intensity earthquakes, and therefore the ductility of the steel links, necessary to dissipate energy under medium-intensity and high-intensity earthquakes. The seismic performance of the proposed HCW system is evaluated through multirecord nonlinear dynamic analysis of a group of case studies designed on the idea of a selected ductile design procedure. The adopted finite-element models are illustrated and validated with experimental tests and more complex three-dimensional numerical models. a variety of results is presented and discussed to spotlight the potential of the proposed innovative HCW systems and t...
Behaviour and design of innovative hybrid coupled shear walls for steel buildings in seismic areas
2012
In this work innovative hybrid coupled shear wall (HCSW) systems are considered, their preliminary design is discussed, their efficiency and limitations evaluated by means of nonlinear static (pushover) analysis as well as nonlinear dynamic (time-history) analysis. Different numbers of storeys and different geometries of the HCSW system are examined in order to give an overview of situations of interest in European seismic prone areas. The results presented in this paper show that promising solutions can be obtained and that some aspects require further research work. This study is part of a larger research project (INNO-HYCO INNOvative HYbrid and COmposite steel-concrete structural solutions for building in seismic area) funded by the European Commission and currently under development.
Procedia Engineering, 2011
Regarding the role of link beams in the seismic behavior of coupled shear walls, in this study, at first a pre-designed concrete link beam of a coupled shear walls system, tested previously under cyclic loading, has been analyzed by Finite Element Modeling (FEM). Then it has been substituted by a steel link beam, and the analyses have been repeated to find out the differences between the hysteretic behavior of the concrete link beam with that of the steel link beam, designed with the same loading. In the verified FEM 8-node elastoplastic solid elements have been used. For the concrete link beams the material has been of 'concrete damage plasticity' type, and for the steel link beams the multi-linear elastoplastic material model has been used. The steel reinforcement bars in concrete elements have been modeled as 'truss' element. The steel link beams have been considered once without stiffeners and once with them to see how they improve its behavior. The embedded length of the steel link beams in the concrete walls has been considered long enough to be able to assume that no sliding occurs between the steel beam and its surrounding concrete. Numerical results show that in case of steel link beams the hysteretic loops does not show any pinching effect, and therefore these link beams are better in seismic energy absorption. The amount of energy absorption can be more than 3 times in comparison with the concrete link beams. Using stiffeners in the steel link beams does not have much effect on their hysteretic behavior, and add their energy absorption capacity only around 10 percent.
Investigating the behavior factor of coupled concrete shear walls with steel coupling beam
Scientia Iranica, 2018
The behavior factor is used to reduce the elastic spectrum ordinate or the forces obtained from a linear analysis in order to take into account the non-linear structural properties. The more accurate this parameter is estimated, the more exact responses of the structures will be obtained. Recently, coupled walls with steel coupling beams are extensively utilized as an efficient system against lateral forces in high-rise buildings. But, there is not enough information about the behavior of these walls during earthquake, and design codes have not suggested any behavior factor for this structural system. Consequently, this paper is devoted to find the behavior factor of this structural system. To achieve this goal, six-, twelve- and twenty-story buildings are assessed. Except for the number of stories, all characteristicsof these buildings are completely similar. Buidlings’ height, the length of the coupling beams and the coupling ratio are key parameters which influence the behavior f...
Seismic Behavior of Hybrid Coupled Wall System
IPTEK Journal of Proceedings Series
concrete (RC) couple wall systems, where RC beams couple two or more RC walls in series, are frequently used in high-rise buildings. Generally, coupling beams are made of RC materials. Steel coupling beam is an alternative for RC coupling beam which has a complex and and unefficient detailing construction. This paper presents a study on the use of Hybrid Coupled Wall System (HCWS) in seismic resistant high-rise RC structures. In the study, 25 storey office buildings with three types of coupling beams and three types of walls distributed over the height of the structure and located in a region with high seismicity are designed. Applying a performance-based design approach, this study developed an efficient design for RC structures having Coupling Ratio (CR) values 64.55% and affect the behavior of the wall pier in the upper region of the structure where widespread plastification and earlier crushing failure happen. Based on this findings, steel coupling beams can be used as an alternative with statisfying all performance criteria and perform at Life Safety(LS).
2021
Modern construction of high-rise and tall buildings depends on coupled shear walls system to resist the lateral loads induced by wind and earthquake hazards. The lateral behavior of this system depends on the structural behavior of its components including coupling beams and shear walls. Although many research studies in the literature investigated coupling beams and shear walls, these studies stopped short of investigating the coupled shear walls as a system. Therefore, in this research, the effect of the coupling beam parameters on the nonlinear behavior of the coupled shear walls system was investigated. The full behavior of a 10-story coupled shear wall system was modeled using a series of finite element analyses. The analysis comprised of testing several coupling beam parameters to capture the effect of each parameter on system response including load-deflection behavior, coupling ratio, crack pattern, and failure mechanism. The results indicated that a span-to-depth ratio equal to two is a turning point for the coupling beam behavior. Specifically, the behavior is dominated by ordinary flexure for a ratio of more than two and deep beam behavior for a ratio of less than two. This study showed that the coupling beam width does not have a significant effect on the coupled shear wall response. Additionally, it was concluded that the excessive coupling beam diagonal reinforcement could significantly affect the coupled shear walls behavior and therefore an upper limit for the diagonal reinforcement was provided. Moreover, limitations on the longitudinal and diagonal reinforcement and stirrups are presented herein. The analysis results presented in this paper can provide guidance for practitioners in terms of making decisions about the coupling ratio of the coupled shear walls.
Analytical model for seismic simulation of reinforced concrete coupled shear walls
Engineering Structures, 2018
Reinforced concrete coupled walls are widely used as the main seismic resistant structural system in high-rise buildings. This paper proposes a new mixed beam-shell model for the seismic analysis of reinforced concrete coupled walls with sufficient efficiency and accuracy on the platform of general finite element software MSC.Marc. Boundary elements at the ends of wall piers are simulated by conventional fiber beam-column elements, while the web of the wall pier is modeled by the layered shell element. Coupling beams are simulated by non-conventional fiber beam-column elements, which can not only take into account the shear and shear-sliding deformation together with various failure modes of conventionally reinforced beams, but also the shear and rebar slip deformation of diagonally reinforced beams. RBE2 link elements are utilized to connect the coupling beams to the wall piers. Eight test specimens reported in the literature are used to validate the proposed model. The mechanism of the coupled wall is thoroughly investigated in terms of the beam deformation, base shear and moment distribution as well as axial force of the wall piers. Furthermore, parametric analyses on specimens with different degrees of coupling and types of reinforcement layouts of coupling beams are conducted. Based on the analyses, the influences of the complex behavior and various modeling parameters of coupling beams on the behavior of coupled wall are revealed quantitatively. As a conclusion of the parametric analyses results, it is recommended that the complicated behavior of coupling beams be accurately considered for most cases in the seismic analysis of coupled wall systems.
Nonlinearity of Single Coupled Reinforced Concrete Shear Walls Supported on Two Columns
2019
Reinforced concrete coupled shear walls supported on two columns can be used to resist lateral loads in high rise buildings specially if columns are at ground floors to satisfy architectural requirements such as parking space dimensions. The objective of this paper is to illustrate theoretically the lateral behaviour of shear walls, connecting beams, transfer beams and supporting columns in elastic and post elastic stage. Consequently, a case study is considered to give a better understanding of the behaviour of the coupled system. Moreover, a three-dimensional non-linear finite element analysis is carried out for 18 samples taking into consideration cracking, crushing of concrete and yielding of rebar. The governing equation, which represents the general solution of the proposed differential equation, is used to validate the outcomes up to elastic range. The results are reported as the effect of characteristic strength, stiffness ratio between columns and walls, reinforcement ratio...
Steel and Concrete Hybrid Structures: Recent Advancements and their Implications for Seismic Design
2019
The optimum combination of steel and concrete elements to constitute hybrid steelconcrete seismic-resistant structural systems should exploit the stiffness of concrete and the ductility and dissipative capacity of steel. If the seismic damage is limited to some, easy to replace, steel components only and the residual deformations are limited, the structural system can be quickly repaired and go back to the full functionality even in the aftermath of major earthquakes. This design strategy allows obtaining structural resilient systems. In this context, the present work aims at reviewing the recent outcomes of a European research project where two hybrid structural systems were numerically and experimentally investigated. A proposal for design recommendations consistent with the framework of the Eurocodes is also presented. The first hybrid system considered is a steel frame with reinforced concrete infill walls designed as a truss structure where seismic damage is concentrated in the vertical steel components with reduced sections undergoing yielding in tension. All other steel elements as well as the reinforced concrete infill walls are designed to work within their elastic range. The second hybrid system considered is a reinforced concrete wall coupled to two steel columns by means of steel links. Both columns and the wall are designed to work in their elastic range while the yielding of the coupling links allows dissipating the seismic energy. Design criteria aiming at activating all links along the building height and the effect of the coupling ratio are discussed.