Designer exosomes produced by implanted cells intracerebrally deliver therapeutic cargo for Parkinson's disease treatment (original) (raw)
Related papers
Exosomes as drug delivery vehicles for Parkinson's disease therapy
Journal of controlled release : official journal of the Controlled Release Society, 2015
Exosomes are naturally occurring nanosized vesicles that have attracted considerable attention as drug delivery vehicles in the past few years. Exosomes are comprised of natural lipid bilayers with the abundance of adhesive proteins that readily interact with cellular membranes. We posit that exosomes secreted by monocytes and macrophages can provide an unprecedented opportunity to avoid entrapment in mononuclear phagocytes (as a part of the host immune system), and at the same time enhance delivery of incorporated drugs to target cells ultimately increasing drug therapeutic efficacy. In light of this, we developed a new exosomal-based delivery system for a potent antioxidant, catalase, to treat Parkinson's disease (PD). Catalase was loaded into exosomes ex vivo using different methods: the incubation at room temperature, permeabilization with saponin, freeze-thaw cycles, sonication, or extrusion. The size of the obtained catalase-loaded exosomes (exoCAT) was in the range of 100...
Exosomes as a Nanodelivery System: a Key to the Future of Neuromedicine?
Molecular Neurobiology, 2014
Since the beginning of the last decade, exosomes have been of increased interest in the science community. Exosomes represent a new kind of long distance transfer of biological molecules among cells. This review provides a comprehensive overview about the construction of exosomes, their targeting and their fusion mechanisms to the recipient cells. Complementarily, the current state of research regarding the cargo of exosomes is discussed. A particular focus was placed on the role of exosomes in the central nervous system. An increasing number of physiological processes in the brain could be associated with exosomes. In this context, it is becoming more apparent that exosomes are involved in several neurological and specifically neurodegenerative diseases. The treatment of these kinds of diseases is often difficult not least because of the blood-brain barrier. Exosomes are very stable, can pass the blood-brain barrier and, therefore, reveal bright perspectives towards diagnosis and therapeutic treatments. A prerequisite for clinical applications is a standardised approach. Features necessary for a standardised diagnosis using exosomes are discussed. In therapeutic terms, exosomes represent a promising drug delivery system able to pass the blood-brain barrier. One option to overcome the disadvantages potentially associated with the use of endogenous exosomes is the design of artificial exosomes. The artificial exosomes with a clearly defined therapeutic active cargo and surface marker ensuring the specific targeting to the recipient cells is proposed as a promising approach.
Cells
The aging population has contributed to the rapid rise in the global incidence of neurodegenerative diseases. Despite the medical advances, there are no effective treatments for these disorders. Therefore, there is an urgent need for new treatments for these diseases. In this sense, cell therapy has been recognized as the best candidate for treating incurable diseases, such as neurodegenerative disorders. However, the therapeutic use of these cells can be limited by several factors. Thus, there has been a rediscovery that extracellular vesicles, including exosomes, can be alternatively explored in the treatment of these diseases, overcoming the limits of cell-based therapy. In this sense, this review aims to revisit all areas from biology, including biogenesis and the content of exosomes, to biotechnology, proposing the minimal information required to isolate, characterize, and study the content of these vesicles for scientific and/or clinical purposes.
Designer Exosomes: Smart Nano-Communication Tools for Translational Medicine
Bioengineering, 2021
Exosomes are the master transporters of genes, RNAs, microRNAs, proteins, and lipids. They have applications in major diseases, including cancer, cardiovascular diseases, neurological disorders, and diabetes mellitus. Delivery of the exosomes to recipient cells is governed by the functional heterogenicity of the tissues. Engineered exosomes are promising tools in tissue regeneration. In addition to their role as intracellular communication cargos, exosomes are increasingly primed as standard biomarkers in the progression of diseases, thereby solving the diagnostic dilemma. Futuristic empowerment of exosomes with OMICS strategy can undoubtedly be a bio-tool in translational medicine. This review discusses the advent transformation of exosomes in regenerative medicine and limitations that are caveats to broader applications in clinical use.
Exosomes: Future Perspective in Neurodegenerative Diseases
Negah Institute for Social Research & Scientific Communication , 2020
Neurodegeneration is a progressive and irreversible loss of neuronal cells in specific regions of the brain. Alzheimer Diseases (AD) Parkinson Disease (PD) are the most common forms of neurodegenerative diseases in older people. Exosomes are extracellular nanovesicles that have a key role in physiological processes such as intercellular communication, cell migration, angiogenesis, and anti-tumor immunity. Mounting evidence indicates the role of exosomes in neurodegenerative disorders as possible carriers of disease particles. They have several different potential applications thanks to their unique structure and functions. The present review summarizes recent studies on exosome potentials as a biomarker and therapeutic tool in neurodegenerative diseases. It also provides an overview of the structure and function of exosomes.
Exosomes for mRNA delivery: a novel biotherapeutic strategy with hurdles and hope
BMC Biotechnology
Over the past decade, therapeutic messenger RNAs (mRNAs) have emerged as a highly promising new class of drugs for protein replacement therapies. Due to the recent developments, the incorporation of modified nucleotides in synthetic mRNAs can lead to maximizing protein expression and reducing adverse immunogenicity. Despite these stunning improvements, mRNA therapy is limited by the need for the development of safe and efficient carriers to protect the mRNA integrity for in vivo applications. Recently, leading candidates for in vivo drug delivery vehicles are cell-derived exosomes, which have fewer immunogenic responses. In the current study, the key hurdles facing mRNA-based therapeutics, with an emphasis on recent strategies to overcoming its immunogenicity and instability, were highlighted. Then the immunogenicity and toxicity of exosomes derived from various cell sources were mentioned in detail. Finally, an overview of the recent strategies in using exosomes for mRNA delivery i...
Engineered Extracellular Vesicles/Exosomes as a New Tool against Neurodegenerative Diseases
Pharmaceutics
Neurodegenerative diseases are commonly generated by intracellular accumulation of misfolded/aggregated mutated proteins. These abnormal protein aggregates impair the functions of mitochondria and induce oxidative stress, thereby resulting in neuronal cell death. In turn, neuronal damage induces chronic inflammation and neurodegeneration. Thus, reducing/eliminating these abnormal protein aggregates is a priority for any anti-neurodegenerative therapeutic approach. Although several antibodies against mutated neuronal proteins have been already developed, how to efficiently deliver them inside the target cells remains an unmet issue. Extracellular vesicles/exosomes incorporating intrabodies against the pathogenic products would be a tool for innovative therapeutic approaches. In this review/perspective article, we identify and describe the major molecular targets associated with neurodegenerative diseases, as well as the antibodies already developed against them. Finally, we propose a...
Large-scale generation of functional mRNA-encapsulating exosomes via cellular nanoporation
Nature Biomedical Engineering, 2019
Exosomes are attractive nucleic-acid carriers because of their favourable pharmacokinetic and immunological properties and of their ability to penetrate physiological barriers that are impermissible to synthetic drug-delivery vehicles. However, inserting exogenous nucleic acids, especially large messenger RNAs (mRNAs), into cell-secreted exosomes leads to low yields. Here, we report a cellular-nanoporation method for the production of large quantities of exosomes containing therapeutic mRNAs and targeting peptides. We transfected various source cells with plasmid DNAs, and stimulated the cells with a focal and transient electrical stimulus that promotes the release of exosomes carrying transcribed mRNAs and targeting peptides. Compared to bulk electroporation and to other exosome-production strategies, cellular nanoporation produced up to 50-fold more exosomes and more than a 10 3-fold increase in exosomal mRNA transcripts, even from cells with low basal levels of exosome secretion. In orthotopic PTEN-deficient glioma mouse models, mRNA-containing exosomes restored tumour-suppressor function, enhanced tumourgrowth inhibition, and increased animal survival. Cellular nanoporation may enable the use of exosomes as a universal nucleic-acid carrier for applications requiring transcriptional manipulation. Nucleic-acid therapeutics hold great potential for treating multiple human diseases. However, a major limitation for nucleic-acid-based therapies is the inefficient delivery of relatively large and negatively charged molecules into cells and tissues of interests. A variety of techniques have been developed over the years for in vivo gene delivery, including viral
Emerging Potential of Exosomal Non-coding RNA in Parkinson’s Disease: A Review
Frontiers in Aging Neuroscience, 2022
Exosomes are extracellular vesicles that are released by cells and circulate freely in body fluids. Under physiological and pathological conditions, they serve as cargo for various biological substances such as nucleotides (DNA, RNA, ncRNA), lipids, and proteins. Recently, exosomes have been revealed to have an important role in the pathophysiology of several neurodegenerative illnesses, including Parkinson's disease (PD). When secreted from damaged neurons, these exosomes are enriched in noncoding RNAs (e.g., miRNAs, lncRNAs, and circRNAs) and display wide distribution characteristics in the brain and periphery, bridging the gap between normal neuronal function and disease pathology. However, the current status of ncRNAs carried in exosomes regulating neuroprotection and PD pathogenesis lacks a systematic summary. Therefore, this review discussed the significance of ncRNAs exosomes in maintaining the normal neuron function and their pathogenic role in PD progression. Additionally, we have emphasized the importance of ncRNAs exosomes as potential non-invasive diagnostic and screening agents for the early detection of PD. Moreover, bioengineered exosomes are proposed to be used as drug carriers for targeted delivery of RNA interference molecules across the blood-brain barrier without immune system interference. Overall, this review highlighted the diverse characteristics of ncRNA exosomes, which may aid researchers in characterizing future exosome-based biomarkers for early PD diagnosis and tailored PD medicines.