A property of approximation operators and applications to Tauberian constants (original) (raw)

Abstract

sparkles

AI

This study investigates properties of approximation operators and determines their applications to Tauberian constants. Results indicate enhancements over previously understood values for specific classes of transforms, revealing that various transforms share identical Tauberian constants. Key theorems outline sufficient conditions under which positive approximation operators exhibit particular behaviors, further establishing the smallest constant satisfying specific inequalities.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (20)

  1. AGNEW, R. P. : Abel transforms and partial sum of Tauberian series. Ann. of Math. 50, 110--117 (1949).
  2. ANJANEYULU, K. : Tauberian constants and quasi-Hausdorff series to series transforma- tions. J. Indian Math. Soc. 28, 69--82 (1964).
  3. ENDL, K. : Untersuchungen fiber Mornentenprobleme bei Verfahren vom Hausdorffschen Typus. Math. Ann. 139, 403--432 (1960).
  4. HAOWIGER, H. : Llber ein Distanztheorem bei der A-Limitierung. Comment. Math. Helv. 16, 209--214 (1944).
  5. HAUSDORFF, F. : Summationsmethoden und Momentenfolgen II. Math. Z. 9, 280--299 (1921).
  6. Math. Z., Bd. 102
  7. JAKn'aOVSKI, A.: The product of summability methods; new classes of transformations and their properties IL Technical (Sientific) Note No. 4 contract No. AF61 (052)-187, August 1959.
  8. --The sequence to function analogues of Hausdorff transformations. BulL Res. Council of Israd 8F, 135--154 (1960).
  9. --Tauberian constants for the [J,f(x)] transformations. Pacific J. of Math. 12, 567--576 (1962).
  10. --, and M. S. RA~_ANUJAN: A uniform approximation theorem and its application to moment problems. Math. Z. 84, 143--153 (1964).
  11. LEVIATAN, D.: Tauberian constants for generalized Hausdorff transformations. (To appear in J. London Math. Soc.)
  12. LO~NTZ, G. G. : Bemstein polynomials. Toronto: University of Toronto Press 1953.
  13. MEre, A. : Tauberian estimates concerning the regular Hausdorff and [J,f(x)] transfor- mations. Canadian J. of Math. 17, 288--301 (1965).
  14. --Limit-distance of Hausdorff transforms of Tauberian series. J. London Math. Soc. 40, 295--302 (1965).
  15. MEYER-KBNIO, W., u. K. ZELLER: Bernsteinsche Potenzreihen. Studia Math. 19, 89--94 (1960).
  16. RA~tANtrJAN, M. S.: Series to series quasi-Hausdorff transformations. J. Indian Math. Soc. 17, 47--53 (1953).
  17. SHERIF, S. : Tauberian constants for general triangular matrices and certain special types of Hausdorff means. Math. Z. 89, 312--323 (1965).
  18. Sz~,sz, O.: Generalization of S. BERNSTEIN'S polynomials to the infinite interval. J. Res. Nat. Bur. Standards 45, 239--245 (1950);
  19. TITCUIVtARSH, E. C. : The theory of functions. London: Oxford Univ. Press 1939.
  20. WINDER, D. V.: The Laplace transform. Princeton: Princeton University Press 1946. Dept. of AppL Maths. Tel-Aviv University, Ramat-Aviv, Tel-Aviv, Israel