Chronic Kidney Disease Prediction Using Different Algorithms (original) (raw)

Chronic Kidney Disease Prediction using Machine Learning Algorithms

International Journal of Preventive Medicine and Health, 2021

Kidney diseases are increasing day by day among people. It is becoming a major health issue around the world. Not maintaining proper food habits and drinking less amount of water are one of the major reasons that contribute this condition. With this, it has become necessary to build up a system to foresee Chronic Kidney Diseases precisely. Here, we have proposed an approach for real time kidney disease prediction. Our aim is to find the best and efficient machine learning (ML) application that can effectively recognize and predict the condition of chronic kidney disease. We have used the data from UCI machine learning repository. In this work, five important machine learning classification techniques were considered for predicting chronic kidney disease which are KNN, Logistic Regression, Random Forest Classifier, SVM and Decision Tree Classifier. In this process, the data has been divided into two sections. In one section train dataset got trained and another section got evaluated ...

Predictive Analysis of Chronic Kidney Disease (CKD) based on Machine Learning Classification Algorithm

IJARCCE, 2021

As per as the World Health Organization report is concern, about 10% of the world population is affected by chronic kidney disease (CKD), and millions die only because of inappropriate and non-affordable treatment. Kidney disease is a worldwide health crisis in the present scenario. This disease can be curable with early diagnosis and proper treatment. The purpose of this paper is to establish some predictive models using Machine Learning algorithms by taking a real time CKD dataset. In this paper, we have shown some real-time experiments and observations with the help of some Machine Learning algorithms, and also shown a clear picture on the predictive analysis on medical diagnosis of the chronic kidney disease (CKD) using Machine Learning algorithms using which patients may get accurate data so as to diagnose better for their early treatment.

Predicting the Kidney Diseases by Using Machine Learning Techniques

ITM Web of Conferences

CKD (Chronic Kidney Diseases) is a persistent medical state categorized by the kidney damage that hinders their ability to effectively filter blood. Over time, this progressive disease can result in kidney failure. This project compares the performance of the Support Vectos Machines (SVM), logistic regression and Decision Tree algorithms for predicting the risk of CKD. In this project, the dataset utilized comprises a total of 25 attributes, consisting of 11 numerical features and 14 nominal features. In the training of machine learning algorithms for prediction, all 400 instances from the dataset are utilized. Among these instances, 250 are labeled as CKD cases, indicating the presence of chronic kidney disease, while the remaining 150 instances are categorized as non-CKD cases, denoting the absence of the condition. We utilized the UCI dataset, which underwent preprocessing to handle missing data. Using Python, we trained and built Support Vectors Machines (SVM), Logistic Regressi...

A Comparative Study, Prediction and Development of Chronic Kidney Disease Using Machine Learning on Patients Clinical Records

Human-Centric Intelligent Systems

Chronic Kidney Disease (CKD) has become a major problem in modern times, and it is dubbed the silent assassin due to its delayed signs. To overcome these critical issues, early identification may minimize the prevalence of chronic diseases, though it is quite difficult because of different kinds of limitations in the dataset. The novelty of our study is that we extracted the best features from the dataset in order to provide the best classification models for diagnosing patients with chronic kidney disease. In our study, we used CKD patients’ clinical datasets to predict CKD using some popular machine learning algorithms. After handling missing values, K-means clustering has been performed. Then feature selection was done by applying the XGBoost feature selection algorithm. After selecting features from our dataset, we have used a variety of machine learning models to determine the best classification models, including Neural Network (NN), Random Forest (RF), Support Vector Machine ...

An Empirical Study of Various Machine Learning Approaches in Prediction of Chronic Kidney Disease

2020

In today's era everybody is trying to be conscious about health. Although, due to workload and busy schedule, one gives attention to the health when any major symptoms occur. But Chronic Kidney Disease (CKD) is a disease which doesn't shows symptoms it is hard to predict, detect and prevent such a disease and this can lead to permanently health damage, but some machine learning algorithms can come handy in this aspect for their efficient prediction and analysis. By using data of CKD, patients with 25 attributes and 400 records we are going to use various machine learning techniques like Random Forest, Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Decision Tree etc. The purposes of our work is to virtuously predicting Chronic Kidney disease and have a comparative analysis among some of the popular machine learning based approaches based on some performance metrics. In our work, it is found that the Random Forest algorithm outperforming other machine learning based ...

Chronic Kidney Disease Prediction Using Machine Learning

Chronic Kidney Disease prediction is one of the most important issues in healthcare analytics. The most interesting and challenging tasks in day to day life is prediction in medical field. In this paper, we employ some machine learning techniques for predicting the chronic kidney disease using clinical data. We use three machine learning algorithms such as Decision Tree(DT) algorithm, Naive Bayesian (NB) algorithm. The performance of the above models are compared with each other in order to select the best classifier in predicting the chronic kidney disease for given dataset.

Chronic Kidney Disease Prediction by Machine Learning

The application of machine learning in the field of medical diagnosis is increasing gradually. This can be contributed primarily to the improvement in the classification and recognition systems used in disease diagnosis which is able to provide data that aids medical experts in early detection of fatal diseases and therefore, increase the survival rate of patients significantly. In this paper, we apply different classification algorithms on the dataset available in UCI repository for disease prediction. Keywords— Machine Learning, Disease Prediction, Chronic Kidney Disease, Decision Tree, Random Forest, KNN, Naive Bayes.

Chronic Renal Disease Prediction using Clinical Data and Different Machine Learning Techniques

Chronic Renal Disease (CRD) or Chronic Kidney Disease (CKD) is defined as the continuous loss of kidney function. It's a long-term condition in which the kidney or renal doesn't work properly, gets damaged and can't filter blood on a regular basis. Diabetes, high blood pressure, swollen feet, ankles or hands and other disorders can cause chronic renal disease. By gradual progression and lack of treatment, it can lead to kidney failure. A prior prognosis of CKD can nourish the quality of life to a higher range in such circumstances and can enhance the attribute of life to a larger province. Now a days, bioscience is playing a significant role in the aspect of diagnosing and detecting numerous health conditions. Machine Learning (ML) as well as Data Mining (DM) methods are playing the leading role in the realm of biosciences. Our objective is to predict and diagnose (CKD) with some machine learning algorithms. In this study, an attempt to diagnose chronic renal disease has been taken with four ML algorithms named XGBoost, Adaboost, Logistic Regression (LR) as well as Random Forest (RF). By using decision tree-based classifiers and analyzing the dataset with comparing their performance, we attempted to diagnose CKD in this study. The results of the model in this study showed prosperous indications of a better prognosis for the diagnosis of kidney diseases. Considering and contemplating the performance analysis, it is accomplished that Random Forest ensemble learning algorithm provides better classification performance than other classification methods.

An Effect of Machine Learning Based Classification Algorithms on Chronic Kidney Disease

International Journal of Innovative Technology and Exploring Engineering, 2020

In the recent days, the prediction models of chronic kidney disease (CKD) becomes significant in the area of decision making which is helpful in healthcare systems. Because of large amount of medical data, efficient models are required to obtain precise results and data classification algorithms can be employed to detect the presence of CKD. Recently, various machine learning (ML) dependent on data classifier technique is presented for forecasting CKD. Since numerous classification algorithms for CKD prediction exist, there is a need to investigate the prediction performance of these algorithms. This paper propose a comparative analysis of 4 data classifier technique such as deep learning (DL), decision tree (DT), random forest (RF) and random tree (RT). The process of classification technique is analyzed with the help of reputed CKD dataset attained from UCI repository. From the simulation outcomes, it is evident that the DL method achieved optimal classifier action with respect to...

Optimization of Prediction Method of Chronic Kidney Disease Using Machine Learning Algorithm

IEEE, 2020

Chronic Kidney disease (CKD), a slow and late-diagnosed disease, is one of the most important problems of mortality rate in the medical sector nowadays. Based on this critical issue, a significant number of men and women are now suffering due to the lack of early screening systems and appropriate care each year. However, patients' lives can be saved with the fast detection of disease in the earliest stage. In addition, the evaluation process of machine learning algorithm can detect the stage of this deadly disease much quicker with a reliable dataset. In this paper, the overall study has been implemented based on four reliable approaches, such as Support Vector Machine (henceforth SVM), AdaBoost (henceforth AB), Linear Discriminant Analysis (henceforth LDA), and Gradient Boosting (henceforth GB) to get highly accurate results of prediction. These algorithms are implemented on an online dataset of UCI machine learning repository. The highest predictable accuracy is obtained from Gradient Boosting (GB) Classifiers which is about to 99.80% accuracy. Later, different performance evaluation metrics have also been displayed to show appropriate outcomes. To end with, the most efficient and optimized algorithms for the proposed job can be selected depending on these benchmarks.