The Role of Chromatin in HIV-1 Transcriptional Regulation (original) (raw)
Related papers
Anti-viral opportunities during transcriptional activation of latent HIV in the host chromatin
Methods, 2011
Human immunodeficiency virus (HIV) when integrated into a host chromosome exists in a transcriptionally inactive but replication-competent state. Such latent infection represents a major challenge to HIV eradication efforts because a permanent virus reservoir resided in the infected cell is able to spike the viral load on immune suppression or during interruption of highly active anti-retroviral therapy. Understanding the molecular mechanisms that control HIV proviral latency and its reactivation could provide new perspectives on host factors as therapeutic targets for abolishing cellular reservoirs of dormant HIV. Although the control of HIV latency is multifactorial, chromatin structure and the chromatin-associated transcriptional machinery are known to be important factors. For instance, transcription initiation of the HIV provirus involves a complex molecular interplay between chromatin-associated proteins and the virus-encoded transactivator, Tat. The first part of this review discusses our current understanding of the elements involved in HIV transcriptional activation and viral mRNA elongation, mainly post-translational modifications of HIV Tat and its interactions with host chromatin-modifying enzymes and chromatin-remodeling complexes. The second part highlights new experimental therapeutic approaches aimed at administrating activators of HIV gene expression to reduce or eliminate the pool of latently HIV-infected cells.
Journal of Virology, 2008
The molecular mechanisms utilized by human immunodeficiency virus (HIV) to enter latency are poorly understood. Following the infection of Jurkat T cells with lentiviral vectors that express Tat in cis, gene expression is progressively silenced. Silencing is greatly enhanced when the lentiviral vectors carry an attenuated Tat gene with the H13L mutation. Individual clones of lentivirus-infected cells showed a wide range of shutdown rates, with the majority showing a 50% silencing frequency between 30 to 80 days. The silenced clones characteristically contained a small fraction (0 to 15%) of activated cells that continued to express d2EGFP. When d2EGFP ؉ and d2EGFP ؊ cell populations were isolated from the shutdown clones, they quickly reverted to the original distribution of inactive and active cells, suggesting that the d2EGFP ؉ cells arise from stochastic fluctuations in gene expression. The detailed analysis of transcription initiation and elongation using chromatin immunoprecipitation (ChIP) assays confirms that Tat levels are restricted in the latently infected cells but gradually rise during proviral reactivation. ChIP assays using clones of latently infected cells demonstrate that the latent proviruses carry high levels of deacetylated histones and trimethylated histones. In contrast, the cellular genes IB␣ and GAPDH had high levels of acetylated histones and no trimethylated histones. The levels of trimethylated histone H3 and HP1-␣ associated with HIV proviruses fell rapidly after tumor necrosis factor alpha activation. The progressive shutdown of HIV transcription following infection suggests that epigenetic mechanisms targeting chromatin structures selectively restrict HIV transcription initiation. This decreases Tat production below the levels that are required to sustain HIV gene expression.
Genes & Development, 1996
NF-kappa B is a potent inducible transcription factor that regulates many genes in activated T cells. In this report we examined the ability of different subunits of NF-kappa B to enhance HIV-1 transcription in vitro with chromatin templates. We find that the p65 subunit of NF-kappa B is a strong transcriptional activator of nucleosome-assembled HIV-1 DNA, whereas p50 does not activate transcription, and that p65 activates transcription synergistically with Sp1 and distal HIV-1 enhancer-binding factors (LEF-1, Ets-1, and TFE-3). These effects were observed with chromatin, but not with nonchromatin templates. Furthermore, binding of either p50 or p65 with Sp1 induces rearrangement of the chromatin to a structure that resembles the one reported previously for integrated HIV-1 proviral DNA in vivo. These results suggest that p50 and Sp1 contribute to the establishment of the nucleosomal arrangement of the uninduced provirus in resting T cells, and that p65 activates transcription by re...
PLoS Genetics, 2009
Rebound of HIV viremia after interruption of anti-retroviral therapy is due to the small population of CD4+ T cells that remain latently infected. HIV-1 transcription is the main process controlling post-integration latency. Regulation of HIV-1 transcription takes place at both initiation and elongation levels. Pausing of RNA polymerase II at the 59 end of HIV-1 transcribed region (59HIV-TR), which is immediately downstream of the transcription start site, plays an important role in the regulation of viral expression. The activation of HIV-1 transcription correlates with the rearrangement of a positioned nucleosome located at this region. These two facts suggest that the 59HIV-TR contributes to inhibit basal transcription of those HIV-1 proviruses that remain latently inactive. However, little is known about the cell elements mediating the repressive role of the 59HIV-TR. We performed a genetic analysis of this phenomenon in Saccharomyces cerevisiae after reconstructing a minimal HIV-1 transcriptional system in this yeast. Unexpectedly, we found that the critical role played by the 59HIV-TR in maintaining low levels of basal transcription in yeast is mediated by FACT, Spt6, and Chd1, proteins so far associated with chromatin assembly and disassembly during ongoing transcription. We confirmed that this group of factors plays a role in HIV-1 postintegration latency in human cells by depleting the corresponding human orthologs with shRNAs, both in HIV latently infected cell populations and in particular single-integration clones, including a latent clone with a provirus integrated in a highly transcribed gene. Our results indicate that chromatin reassembly factors participate in the establishment of the equilibrium between activation and repression of HIV-1 when it integrates into the human genome, and they open the possibility of considering these factors as therapeutic targets of HIV-1 latency.
Regulation of HIV-1 transcription
PubMed, 1999
Human immunodeficiency virus type-1 (HIV-1) is a highly pathogenic lentivirus that requires transcription of its provirus genome for completion of the viral life cycle and the production of progeny virions. Since the first genetic analysis of HIV-1 in 1985, much has been learned about the transcriptional regulation of the HIV-1 genome in infected cells. It has been demonstrated that HIV-1 transcription depends on a varied and complex interaction of host cell transcription factors with the viral long terminal repeat (LTR) promoter. The regulatory elements within the LTR interact with constitutive and inducible transcription factors to direct the assembly of a stable transcription complex that stimulates multiple rounds of transcription by RNA polymerase II (RNAPII). However, the majority of these transcripts terminate prematurely in the absence of the virally encoded trans-activator protein Tat, which stimulates HIV-1 transcription elongation by interacting with a stem-loop RNA element (TAR) formed at the extreme 5' end of all viral transcripts. The Tat-TAR interaction recruits a cellular kinase into the initiation-elongation complex that alters the elongation properties of RNAPII during its transit through TAR. This review summarizes our current knowledge and understanding of the regulation of HIV-1 transcription in infected cells and highlights the important contributions human lentivirus gene regulation has made to our general understanding of the transcription process.
Integrative Biology, 2012
Higher order chromatin structure in eukaryotes can lead to differential gene expression in response to the same transcription factor; however, how transcription factor inputs integrate with quantitative features of the chromatin environment to regulate gene expression is not clear. In vitro models of HIV gene regulation, in which repressive mechanisms acting locally at an integration site keep proviruses transcriptionally silent until appropriately stimulated, provide a powerful system to study gene expression regulation in different chromatin environments. Here we quantified HIV expression as a function of activating transcription factor nuclear factor-κB RelA/ p65 (RelA) levels and chromatin features at a panel of viral integration sites. Variable RelA overexpression demonstrated that the viral genomic location sets a threshold RelA level necessary to induce gene expression. However, once the induction threshold is reached, gene expression increases similarly for all integration sites. Furthermore, we found that higher induction thresholds are associated with repressive histone marks and a decreased sensitivity to nuclease digestion at the LTR promoter. Increasing chromatin accessibility via inhibition of histone deacetylation or DNA methylation lowered the induction threshold, demonstrating that chromatin accessibility sets the level of RelA required to activate gene expression. Finally, a functional relationship between gene expression, RelA level, and chromatin accessibility accurately predicted synergistic HIV activation in response to combinatorial pharmacological perturbations. Different genomic environments thus set a threshold for transcription factor activation of a key viral promoter, which may point toward biological principles that underlie selective gene expression and inform strategies for combinatorial therapies to combat latent HIV.
Virology, 2010
The SWI/SNF complex remodels nucleosomes, allowing RNA Polymerase II access to the HIV-1 proviral DNA. It has not been determined which SWI/SNF complex (BAF or PBAF) remodels nucleosomes at the transcription start site. These complexes differ in only three subunits and determining which subunit(s) is required could explain the regulation of Tat activated transcription. We show that PBAF is required for chromatin remodeling at the nuc-1 start site and transcriptional elongation. We find that Baf200 is required to ensure activation at the LTR level and for viral production. Interestingly, the BAF complex was observed on the LTR whereas PBAF was present on both LTR and Env regions. We found that Tat activated transcription facilitates removal of histones H2A and H2B at the LTR, and that the FACT complex may be responsible for their removal. Finally, the BAF complex may play an important role in regulating splicing of the HIV-1 genome.
The EMBO Journal, 2006
Activation of the human immunodeficiency virus type-1 (HIV-1) promoter in infected cells requires the sequential recruitment of several cellular factors to facilitate the formation of a processive elongation complex. The nucleosomal reorganization of the HIV-1 long terminal repeat (LTR) observed upon Tat stimulation suggests that chromatin-remodeling complexes could play a role during this process. Here, we reported that Tat interacts directly with Brm, a DNA-dependent ATPase subunit of the SWI/SNF chromatin-remodeling complex, to activate the HIV-1 LTR. Inhibition of Brm via small interfering RNAs impaired Tatmediated transactivation of an integrated HIV-1 promoter. Furthermore, Brm is recruited in vivo to the HIV-1 LTR in a Tat-dependent manner. Interestingly, we found that Tat/ Brm interaction is regulated by Tat lysine 50 acetylation. These data show the requirement of Tat-mediated recruitment of SWI/SNF chromatin-remodeling complex to HIV-1 promoter in the activation of the LTR.
Histone Acetyltransferases Regulate HIV-1 Enhancer Activity In Vitro
Genes & …, 1997
Specific inhibitors of histone deacetylase, such as trichostatin A (TSA) and trapoxin (TPX), are potent inducers of HIV-1 transcription in latently infected T-cell lines. Activation of the integrated HIV-1 promoter is accompanied by the loss or rearrangement of a positioned nucleosome (nuc-1) near the viral RNA start site. Here we show that TSA strongly induces HIV-1 transcription on chromatin in vitro, concomitant with an enhancer factor-assisted increase in the level of acetylated histone H4. TSA treatment, however, did not detectably alter enhancer factor binding or the positioning of nuc-1 on the majority of the chromatin templates indicating that protein acetylation and chromatin remodeling may be limiting steps that occur only on transcriptionally competent templates, or that remodeling of nuc-1 requires additional factors. To assess the number of active chromatin templates in vitro, transcription was limited to a single round with low levels of the detergent Sarkosyl. Remarkably, HIV-1 transcription on chromatin was found to arise from a small number of active templates that can each support nearly 100 rounds of transcription, and TSA increased the number of active templates in each round. In contrast, transcription on naked DNA was limited to only a few rounds and was not responsive to TSA. We conclude that HIV-1 enhancer complexes greatly facilitate transcription reinitiation on chromatin in vitro, and act at a limiting step to promote the acetylation of histones or other transcription factors required for HIV-1 enhancer activity.