Chloroethylnitrosourea-induced cell death and genotoxicity: Cell cycle dependence and the role of DNA double-strand breaks, HR and NHEJ (original) (raw)

Abstract

C hloroethylnitrosureas (CNUs) are powerful DNA-reactive alkylating agents used in cancer therapy. Here, we analyzed cyto-and genotoxicity of nimustine (ACNU), a representative of CNUs, in synchronized cells and in cells deficient in repair proteins involved in homologous recombination (HR) or nonhomologous end-joining (NHEJ). We show that HR mutants are extremely sensitive to ACNU, as measured by colony formation, induction of apoptosis and chromosomal aberrations. The NHEJ mutants differed in their sensitivity, with Ku80 mutants being moderately sensitive and DNA-PKcs mutated cells being resistant. HR mutated cells displayed a sustained high level of γH2AX foci , which co-stained with Rad51 and 53BP1, indicating DNA double-strand breaks (DSB) to be formed. Using synchronized cells, we analyzed whether DSB formation after ACNU treatment was replication-dependent. We show that γH2AX foci were not induced in G 1 but increased significantly in S phase and remained at a high level in G 2 , where a fraction of cells became arrested and underwent, with a delay of > 12 h, cell death by apoptosis and necrosis. Rad51, ATM, MDC-1 and RPA-2 foci were also formed and shown to co-localize with γH2AX foci induced in S phase, indicating that the DNA damage response was activated. All effects observed were abrogated by MGMT, which repairs O 6 -chloroethylguanine that is converted into DNA cross-links. We deduce that the major genotoxic and killing lesion induced by CNUs are O 6 -chloroethylguanine-triggered

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (54)

  1. Quéreux G, Dréno B. Fotemustine for the treatment of melanoma. Expert Opin Pharmacother 2011; 12:2891-904; PMID:22077794; http://dx.doi.org/1
  2. Silvani A, Gaviani P, Lamperti E, Botturi A, Ferrari D, Simonetti G, et al. Lecture: fotemustine in brain tumors. Neurol Sci 2011; 32(Suppl 2):S255- 7; PMID:21987288; http://dx.doi.org/10.1007/ s10072-011-0800-4.
  3. Vauleon E, Mesbah H, Gedouin D, Lecouillard I, Louvel G, Hamlat A, et al. Retrospective analy- sis of 24 recurrent glioblastoma after chemoradia- tion and treated with nitrosoureas or irinotecan and bevacizumab. Bull Cancer 2012; 99:121-6; PMID:22257744.
  4. Apisarnthanarax N, Wood GS, Stevens SR, Carlson S, Chan DV, Liu L, et al. Phase I Clinical Trial of O6-Benzylguanine and Topical Carmustine in the Treatment of Cutaneous T-Cell Lymphoma, Mycosis Fungoides Type. Arch Dermatol 2012; PMID:22250189.
  5. Chaichana KL, Zaidi H, Pendleton C, McGirt MJ, Grossman R, Weingart JD, et al. The efficacy of car- mustine wafers for older patients with glioblastoma multiforme: prolonging survival. Neurol Res 2011; 33:759-64; PMID:21756557; http://dx.doi.org/10.1 179/1743132811Y.0000000006.
  6. Gwak HS, Youn SM, Kwon AH, Lee SH, Kim JH, Rhee CH. ACNU-cisplatin continuous infusion che- motherapy as salvage therapy for recurrent glioblas- tomas: phase II study. J Neurooncol 2005; 75:173- 80; PMID:16132508; http://dx.doi.org/10.1007/ s11060-005-1858-8.
  7. Fu D, Calvo JA, Samson LD. Balancing repair and tolerance of DNA damage caused by alkyl- ating agents. Nat Rev Cancer 2012; 12:104-20; PMID:22237395.
  8. Affronti ML, Heery CR, Herndon JE 2 nd , Rich JN, Reardon DA, Desjardins A, et al. Overall survival of newly diagnosed glioblastoma patients receiving car- mustine wafers followed by radiation and concurrent temozolomide plus rotational multiagent chemother- apy. Cancer 2009; 115:3501-11; PMID:19514083; http://dx.doi.org/10.1002/cncr.24398.
  9. Quiros S, Roos WP, Kaina B. Rad51 and BRCA2- -New molecular targets for sensitizing glioma cells to alkylating anticancer drugs. PLoS One 2011; 6:e27183; PMID:22073281; http://dx.doi. org/10.1371/journal.pone.0027183.
  10. Kondo N, Takahashi A, Mori E, Noda T, Su X, Ohnishi K, et al. DNA ligase IV is a potential molecular target in ACNU sensitivity. Cancer Sci 2010; 101:1881-5; PMID:20487264; http://dx.doi. org/10.1111/j.1349-7006.2010.01591.x.
  11. Mochan TA, Venere M, DiTullio RA Jr., Halazonetis TD. 53BP1, an activator of ATM in response to DNA damage. DNA Repair (Amst) 2004; 3:945- 52; PMID:15279780; http://dx.doi.org/10.1016/j. dnarep.2004.03.017.
  12. Zhou XY, Wang X, Wang H, Chen DJ, Li GC, Iliakis G, et al. Ku affects the ATM-dependent S phase checkpoint following ionizing radiation. Oncogene 2002; 21:6377-81; PMID:12214278; http://dx.doi. org/10.1038/sj.onc.1205782.
  13. Wei L, Lan L, Hong Z, Yasui A, Ishioka C, Chiba N. Rapid recruitment of BRCA1 to DNA double-strand breaks is dependent on its association with Ku80. Mol Cell Biol 2008; 28:7380-93; PMID:18936166; http://dx.doi.org/10.1128/MCB.01075-08.
  14. Bhattacharyya A, Ear US, Koller BH, Weichselbaum RR, Bishop DK. The breast cancer susceptibility gene BRCA1 is required for subnuclear assembly of Rad51 and survival following treatment with the DNA cross-linking agent cisplatin. J Biol Chem 2000; 275:23899-903; PMID:10843985; http:// dx.doi.org/10.1074/jbc.C000276200.
  15. Liu Y, Tarsounas M, O'regan P, West SC. Role of RAD51C and XRCC3 in genetic recombination and DNA repair. J Biol Chem 2007; 282:1973- 9; PMID:17114795; http://dx.doi.org/10.1074/jbc. M609066200.
  16. Batista LF, Roos WP, Christmann M, Menck CF, Kaina B. Differential sensitivity of malignant glioma cells to methylating and chloroethylating anticancer drugs: p53 determines the switch by regulating xpc, ddb2, and DNA double-strand breaks. Cancer Res 2007; 67:11886-95; PMID:18089819; http://dx.doi. org/10.1158/0008-5472.CAN-07-2964.
  17. Kraakman-van der Zwet M, Overkamp WJ, van Lange RE, Essers J, van Duijn-Goedhart A, Wiggers I, et al. Brca2 (XRCC11) deficiency results in radio- resistant DNA synthesis and a higher frequency of spontaneous deletions. Mol Cell Biol 2002; 22:669- 79; PMID:11756561; http://dx.doi.org/10.1128/ MCB.22.2.669-679.2002.
  18. Hinz JM, Tebbs RS, Wilson PF, Nham PB, Salazar EP, Nagasawa H, et al. Repression of mutagen- esis by Rad51D-mediated homologous recom- bination. Nucleic Acids Res 2006; 34:1358-68; PMID:16522646; http://dx.doi.org/10.1093/nar/ gkl020.
  19. Errami A, Finnie NJ, Morolli B, Jackson SP, Lohman PH, Zdzienicka MZ. Molecular and biochemical characterization of new X-ray-sensitive hamster cell mutants defective in Ku80. Nucleic Acids Res 1998; 26:4332-8; PMID:9742232; http://dx.doi. org/10.1093/nar/26.19.4332.
  20. Singleton BK, Priestley A, Steingrimsdottir H, Gell D, Blunt T, Jackson SP, et al. Molecular and biochemical characterization of xrs mutants defec- tive in Ku80. Mol Cell Biol 1997; 17:1264-73; PMID:9032253.
  21. Uematsu N, Weterings E, Yano K, Morotomi- Yano K, Jakob B, Taucher-Scholz G, et al. Autophosphorylation of DNA-PKCS regulates its dynamics at DNA double-strand breaks. J Cell Biol 2007; 177:219-29; PMID:17438073; http://dx.doi. org/10.1083/jcb.200608077.
  22. Ho TV, Schärer OD. Translesion DNA synthe- sis polymerases in DNA interstrand crosslink repair. Environ Mol Mutagen 2010; 51:552-66; PMID:20658647.
  23. Hinz JM. Role of homologous recombination in DNA interstrand crosslink repair. Environ Mol Mutagen 2010; 51:582-603; PMID:20658649.
  24. Roos WP, Kaina B. DNA damage-induced cell death by apoptosis. Trends Mol Med 2006; 12:440-50; PMID:16899408; http://dx.doi.org/10.1016/j.mol- med.2006.07.007.
  25. Cejka P, Mojas N, Gillet L, Schär P, Jiricny J. Homologous recombination rescues mismatch- repair-dependent cytotoxicity of S(N)1-type meth- ylating agents in S. cerevisiae. Curr Biol 2005; 15:1395-400; PMID:16085492; http://dx.doi. org/10.1016/j.cub.2005.07.032.
  26. Quiros S, Roos WP, Kaina B. Processing of O6-methylguanine into DNA double-strand breaks requires two rounds of replication whereas apoptosis is also induced in subsequent cell cycles. Cell Cycle 2010; 9:168-78; PMID:20016283; http://dx.doi. org/10.4161/cc.9.1.10363.
  27. Roos WP, Nikolova T, Quiros S, Naumann SC, Kiedron O, Zdzienicka MZ, et al. Brca2/Xrcc2 dependent HR, but not NHEJ, is required for protec- tion against O(6)-methylguanine triggered apopto- sis, DSBs and chromosomal aberrations by a process leading to SCEs. DNA Repair (Amst) 2009; 8:72- 86; PMID:18840549; http://dx.doi.org/10.1016/j. dnarep.2008.09.003.
  28. Nikolova T, Ensminger M, Löbrich M, Kaina B. Homologous recombination protects mammalian cells from replication-associated DNA double-strand breaks arising in response to methyl methanesul- fonate. DNA Repair (Amst) 2010; 9:1050-63; PMID:20708982; http://dx.doi.org/10.1016/j. dnarep.2010.07.005.
  29. Ljungman M. The DNA damage response--repair or despair? Environ Mol Mutagen 2010; 51:879- 89; PMID:20818630; http://dx.doi.org/10.1002/ em.20597.
  30. Shi W, Feng Z, Zhang J, Gonzalez-Suarez I, Vanderwaal RP, Wu X, et al. The role of RPA2 phosphorylation in homologous recombination in response to replication arrest. Carcinogenesis 2010; 31:994-1002; PMID:20130019; http://dx.doi. org/10.1093/carcin/bgq035.
  31. Li X, Heyer WD. Homologous recombination in DNA repair and DNA damage tolerance. Cell Res 2008; 18:99-113; PMID:18166982; http://dx.doi. org/10.1038/cr.2008.1.
  32. Nakanishi K, Cavallo F, Perrouault L, Giovannangeli C, Moynahan ME, Barchi M, et al. Homology- directed Fanconi anemia pathway cross-link repair is dependent on DNA replication. Nat Struct Mol Biol 2011; 18:500-3; PMID:21423196; http://dx.doi. org/10.1038/nsmb.2029.
  33. Roos WP, Kaina B. DNA damage-induced apopto- sis: From specific DNA lesions to the DNA dam- age response and apoptosis. Cancer Lett 2012; PMID:22261329; http://dx.doi.org/10.1016/j.can- let.2012.01.007.
  34. Herrlinger U, Rieger J, Koch D, Loeser S, Blaschke B, Kortmann RD, et al. Phase II trial of lomustine plus temozolomide chemotherapy in addition to radio- therapy in newly diagnosed glioblastoma: UKT-03.
  35. J Clin Oncol 2006; 24:4412-7; PMID:16983109; http://dx.doi.org/10.1200/JCO.2006.06.9104.
  36. Kondo N, Takahashi A, Mori E, Noda T, Zdzienicka MZ, Thompson LH, et al. FANCD1/BRCA2 plays predominant role in the repair of DNA damage induced by ACNU or TMZ. PLoS One 2011; 6:e19659; PMID:21573016 ; http://dx.doi. org/10.1371/journal.pone.0019659.
  37. Weller M, Müller B, Koch R, Bamberg M, Krauseneck P; Neuro-Oncology Working Group of the German Cancer Society. Neuro-Oncology Working Group 01 trial of nimustine plus teniposide versus nimustine plus cytarabine chemotherapy in addition to involved-field radiotherapy in the first- line treatment of malignant glioma. J Clin Oncol 2003; 21:3276-84; PMID:12947063; http://dx.doi. org/10.1200/JCO.2003.03.509.
  38. Ludlum DB. DNA alkylation by the haloethyl- nitrosoureas: nature of modifications produced and their enzymatic repair or removal. Mutat Res 1990; 233:117-26; PMID:2233793; http://dx.doi. org/10.1016/0027-5107(90)90156-X.
  39. Hayes MT, Bartley J, Parsons PG, Eaglesham GK, Prakash AS. Mechanism of action of fotemustine, a new chloroethylnitrosourea anticancer agent: evi- dence for the formation of two DNA-reactive inter- mediates contributing to cytotoxicity. Biochemistry 1997; 36:10646-54; PMID:9271495; http://dx.doi. org/10.1021/bi970791q.
  40. Kaina B, Christmann M, Naumann S, Roos WP. MGMT: key node in the battle against genotoxicity, carcinogenicity and apoptosis induced by alkylat- ing agents. DNA Repair (Amst) 2007; 6:1079- 99; PMID:17485253; http://dx.doi.org/10.1016/j. dnarep.2007.03.008.
  41. Preuss I, Thust R, Kaina B. Protective effect of O6 -methylguanine-DNA methyltransfer- ase (MGMT) on the cytotoxic and recombino- genic activity of different antineoplastic drugs. Int J Cancer 1996; 65:506-12; PMID:8621235;
  42. Tong WP, Kirk MC, Ludlum DB. Formation of the cross-link 1-[N3-deoxycytidyl),2-[N1- deoxyguanosinyl]ethane in DNA treated with N,N'- bis(2-chloroethyl)-N-nitrosourea. Cancer Res 1982; 42:3102-5; PMID:7093954.
  43. Akkari YM, Bateman RL, Reifsteck CA, Olson SB, Grompe M. DNA replication is required To elicit cellular responses to psoralen-induced DNA inter- strand cross-links. Mol Cell Biol 2000; 20:8283- 9; PMID:11027296; http://dx.doi.org/10.1128/ MCB.20.21.8283-8289.2000.
  44. Bessho T. Induction of DNA replication-mediat- ed double strand breaks by psoralen DNA inter- strand cross-links. J Biol Chem 2003; 278:5250-4; PMID:12473662; http://dx.doi.org/10.1074/jbc. M212323200.
  45. Vasquez KM, Legerski RJ. DNA interstrand cross- links: repair, cell signaling and therapeutic impli- cations. Environ Mol Mutagen 2010; 51:491-2; PMID:20577999.
  46. Marosi C. Complications of chemotherapy in neuro- oncology. Handb Clin Neurol 2012; 105:873-85; PMID:22230539; http://dx.doi.org/10.1016/B978- 0-444-53502-3.00029-X.
  47. Gerson SL. Clinical relevance of MGMT in the treatment of cancer. J Clin Oncol 2002; 20:2388- 99; PMID:11981013; http://dx.doi.org/10.1200/ JCO.2002.06.110.
  48. Kokkinakis DM, Ahmed MM, Chendil D, Moschel RC, Pegg AE. Sensitization of pancreatic tumor xenografts to carmustine and temozolomide by inac- tivation of their O6-Methylguanine-DNA methyl- transferase with O6-benzylguanine or O6-benzyl-2'- deoxyguanosine. Clin Cancer Res 2003; 9:3801-7; PMID:14506174.
  49. Middleton MR, Margison GP. Improvement of chemotherapy efficacy by inactivation of a DNA- repair pathway. Lancet Oncol 2003; 4:37-44; PMID:12517538; http://dx.doi.org/10.1016/S1470- 2045(03)00959-8.
  50. Rahn JJ, Adair GM, Nairn RS. Multiple roles of ERCC1-XPF in mammalian interstrand cross- link repair. Environ Mol Mutagen 2010; 51:567-81; PMID:20658648.
  51. Errami A, He DM, Friedl AA, Overkamp WJ, Morolli B, Hendrickson EA, et al. XR-C1, a new CHO cell mutant which is defective in DNA- PKcs, is impaired in both V(D)J coding and signal joint formation. Nucleic Acids Res 1998; 26:3146- 53; PMID:9628911; http://dx.doi.org/10.1093/ nar/26.13.3146.
  52. Hayashi T, Takao M, Tanaka K, Yasui A. ERCC1 mutations in UV-sensitive Chinese hamster ovary (CHO) cell lines. Mutat Res 1998; 407:269-76; PMID:9653453.
  53. Zdzienicka MZ, van der Schans GP, Natarajan AT, Thompson LH, Neuteboom I, Simons JW. A Chinese hamster ovary cell mutant (EM-C11) with sensitiv- ity to simple alkylating agents and a very high level of sister chromatid exchanges. Mutagenesis 1992; 7:265-9; PMID:1518409; http://dx.doi.org/10.1093/ mutage/7.4.265.
  54. Preuss I, Haas S, Eichhorn U, Eberhagen I, Kaufmann M, Beck T, et al. Activity of the DNA repair protein O6-methylguanine-DNA methyltrans- ferase in human tumor and corresponding nor- mal tissue. Cancer Detect Prev 1996; 20:130-6; PMID:8706038.