Mechanism of Glycan Receptor Recognition and Specificity Switch for Avian, Swine and Human Adapted Influenza Virus Hemagglutinins: A Molecular Dynamics Perspective (original) (raw)

Abstract

Hemagglutinins (HA's) from duck, swine, and human influenza viruses have previously been shown to prefer avian and human glycan receptor analogues with distinct topological profiles, pentasaccharides LSTa (R-2,3 linkage) and LSTc (R-2,6 linkage), in comparative molecular dynamics studies. On the basis of detailed analyses of the dynamic motions of the receptor binding domains (RBDs) and interaction energy profiles with individual glycan residues, we have identified ∼30 residue positions in the RBD that present distinct profiles with the receptor analogues. Glycan binding constrained the conformational space sampling by the HA. Electrostatic steering appeared to play a key role in glycan binding specificity. The complex dynamic behaviors of the major SSE and trimeric interfaces with or without bound glycans suggested that networks of interactions might account for species specificity in these low affinity and high avidity (multivalent) interactions between different HA and glycans. Contact frequency, energetic decomposition, and H-bond analyses revealed species-specific differences in HA-glycan interaction profiles, not readily discernible from crystal structures alone. Interaction energy profiles indicated that mutation events at the set of residues such as 145, 156, 158, and 222 would favor human or avian receptor analogues, often through interactions with distal asialo-residues. These results correlate well with existing experimental evidence, and suggest new opportunities for simulation-based vaccine and drug development.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (46)

  1. Ha, Y.; Stevens, D. J.; Skehel, J. J.; Wiley, D. C. Proc. Natl. Acad. Sci. U. S. A. 2001, 98, 11181-11186.
  2. Martin, J.; Wharton, S. A.; Lin, Y. P.; Takemoto, D. K.; Skehel, J. J.; Wiley, D. C.; Steinhauer, D. A. Virology 1998, 241, 101-111.
  3. Yang, Z. Y.; Wei, C. J.; Kong, W. P.; Wu, L.; Xu, L.; Smith, D. F.; Nabel, G. J. Science 2007, 317, 825-828.
  4. Yamada, S.; Suzuki, Y.; Suzuki, T.; Le, M. Q.; Nidom, C. A.; et al. Nature 2006, 444, 378-382.
  5. Stevens, J.; Blixt, O.; Tumpey, T. M.; Taubenberger, J. K.; Paulson, J. C.; Wilson, I. A. Science 2006, 312, 404-410.
  6. Matrosovich, M. N.; Matrosovich, T. Y.; Gray, T.; Roberts, N. A.; Klenk, H. D. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 4620-4624.
  7. Nicholls, J. M.; Chan, M. C.; Chan, W. Y.; Wong, H. K.; Cheung, C. Y.; Kwong, D. L.; Wong, M. P.; Chui, W. H.; Poon, L. L.; Tsao, S. W.; Guan, Y.; Peiris, J. S. Nat. Med. 2007, 13, 147-149.
  8. Yen, H. L.; Aldridge, J. R.; Boon, A. C.; Ilyushina, N. A.; Salomon, R.; Hulse-Post, D. J.; Marjuki, H.; Franks, J.; Boltz, D. A.; Bush, D.; Lipatov, A. S.; Webby, R. J.; Rehg, J. E.; Webster, R. G. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 286-291.
  9. Qi, L.; Kash, J. C.; Dugan, V. G.; Wang, R.; Jin, G.; Cunningham, R.; Taubenberger, J. K. J. Virol. 2009, 83, 3754-3761.
  10. Tumpey, T. M.; Maines, T. R.; Van Hoeven, N.; Glaser, L.; Solorzano, A.; Pappas, C.; Cox, N. J.; Swayne, D. E.; Palese, P.; Katz, J. M.; Garcia-Sastre, A. Science 2007, 315, 655-659.
  11. Chandrasekaran, A.; Srinivasan, A.; Raman, R.; Viswanathan, K.; Raguram, S.; Tumpey, T. M.; Sasisekharan, V.; Sasisekharan, R. Nat. Biotechnol. 2008, 26, 107-113.
  12. Varki, N. M.; Varki, A. Lab. InVest. 2007, 87, 851-857.
  13. Shinya, K.; Ebina, M.; Yamada, S.; Ono, M.; Kasai, N.; Kawaoka, Y. Nature 2006, 440, 435-436.
  14. Gambaryan, A. S.; Tuzikov, A. B.; Pazynina, G. V.; Desheva, J. A.; Bovin, N. V.; Matrosovich, M. N.; Klimov, A. I. Virology J. 2008, 5, 85-94.
  15. Gambaryan, A.; Yamnikova, S.; Lvov, D.; Tuzikov, A.; Chinarev, A.; Pazynina, G.; Webster, R.; Matrosovich, M.; Bovin, N. Virology 2005, 334, 276-283.
  16. Woods, R. J. Glycoconjugate J. 1998, 15, 209-216.
  17. Ohuchi, M.; Ohuchi, R.; Feldmann, A.; Klenk, H. D. J. Virol. 1997, 71, 8377-8384.
  18. Kasson, P. M.; Pande, V. S. Biophys. J. 2008, 95, L48-50.
  19. Xu, D.; Newhouse, E. I.; Amaro, R. E.; Pao, H.; Cheng, L. S.; McCammon, J. A.; Li, W. W.; W.; Arzberger, P. J. Mol. Biol. 2009, 387, 465-491.
  20. Eisen, M. B.; Sabesan, S.; Skehel, J. J.; Wiley, D. C. Virology 1997, 232, 19-31.
  21. Ha, Y.; Stevens, D. J.; Skehel, J. J.; Wiley, D. C. Virology 2003, 309, 209-218.
  22. Sanner, M. F. Structure (Cambridge, MA, U. S.) 2005, 13, 447-462.
  23. Dolinsky, T. J.; Czodrowski, P.; Li, H.; Nielsen, J. E.; Jensen, J. H.; Klebe, G.; Baker, N. A. Nucleic Acids Res. 2007, 35, W522-525.
  24. Baker, N. A.; Sept, D.; Joseph, S.; Holst, M. J.; McCammon, J. A. Proc. Natl. Acad. Sci. U. S. A. 2001, 98, 10037-10041.
  25. Bhandarkar, M.; Brunner, R.; Chipot, C.; Dalke, A.; Dixit, S. It's a document distributed with NAMD, and is also available online from http://www.ks.uiuc.edu/Research/namd/2.7b1/ug/ there is no paper ver- sion published commercially.
  26. Sanner, M. F.; Olson, A. J.; Spehner, J. C. Biopolymers 1996, 38, 305-320.
  27. Cline, M. S.; Smoot, M.; Cerami, E.; Kuchinsky, A.; Landys, N.; et al. Nat. Protoc. 2007, 2, 2366-2382.
  28. Chachra, R.; Rizzo, R. C. J. Chem. Theory Comput. 2008, 4, 1526- 1540.
  29. Gumbart, J. C.; Lo, D.; Trabucco, L.; Villa, E. personal communication from J. C. Gumbart 2008.
  30. Ha, Y.; Stevens, D. J.; Skehel, J. J.; Wiley, D. C. Embo J. 2002, 21, 865-875.
  31. Russell, R. J.; Stevens, D. J.; Haire, L. F.; Gamblin, S. J.; Skehel, J. J. Glycoconjugate J. 2006, 23, 85-92.
  32. Suydam, I. T.; Snow, C. D.; Pande, V. S.; Boxer, S. G. Science 2006, 313, 200-204.
  33. McCammon, J. A. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 7683- 7684.
  34. Bryce, R. A.; Hillier, I. H.; Naismith, J. H. Biophys. J. 2001, 81, 1373- 1388.
  35. Kadirvelraj, R.; Gonzalez-Outeirino, J.; Foley, B. L.; Beckham, M. L.; Jennings, H. J.; Foote, S.; Ford, M. G.; Woods, R. J. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 8149-8154.
  36. Hanson, J. E.; Sauter, N. K.; Skehel, J. J.; Wiley, D. C. Virology 1992, 189, 525-533.
  37. Frank, M.; Lieth, C. W. J. Mol. Model. 1997, 3, 408-414.
  38. Li, M.; Wang, B. Biochem. Biophys. Res. Commun. 2006, 347, 662- 668.
  39. Auewarakul, P.; Suptawiwat, O.; Kongchanagul, A.; Sangma, C.; Suzuki, Y.; et al. J. Virol. 2007, 81, 9950-9955.
  40. Liu, Z.; Tang, P. Biophys. J. 2005, 88, 3784-3791.
  41. Turjanski, A. G.; Estrin, D. A.; Rosenstein, R. E.; McCormick, J. E.; Martn, S. R.; Pastore, A.; Biekofsky, R. R.; Martorana, V. Protein Sci. 2004, 13, 2925-2938.
  42. Caves, L. S.; Evanseck, J. D.; Karplus, M. Protein Sci. 1998, 7, 649- 666.
  43. Monticelli, L.; Sorin, E. J.; Tieleman, D. P.; Pande, V. S.; Colombo, G. J. Comput. Chem. 2008, 29.
  44. Ekiert, D. C.; Bhabha, G.; Elsliger, M. A.; Friesen, R. H.; Jongeneelen, M.; Throsby, M.; Goudsmit, J.; Wilson, I. A. Science 2009, 324, 246- 251.
  45. Sui, J.; Hwang, W. C.; Perez, S.; Wei, G.; Aird, D.; et al. Nat. Struct. Mol. Biol. 2009, 16, 265-273.
  46. Kasson, P. M.; Pande, V. S. Pac. Symp. Biocomput. 2009, 492-503.