INTRODUCTION TO THE MATHEMATICAL THEORY OF COMPRESSIBLE FLOW (original) (raw)
2021, INTRODUCTION TO THE MATHEMATICAL THEORY OF COMPRESSIBLE FLOW
Abstract
AI
This book provides a mathematical framework for understanding the flow of Newtonian compressible fluids in both steady and unsteady regimes, exploring fundamental equations like the Euler and Navier-Stokes equations. It aims to present recent advancements and nontrivial results in a format that is accessible to a broad audience, while also being self-contained for readers of varying expertise. Highlights include discussions on heuristic approaches to proofs and the omission of non-Newtonian fluid dynamics, focusing on isentropic and barotropic flows.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (264)
- I. Fonseca and W. Gangbo: Degree theory in analysis and applications
- P.-L. Lions: Mathematical topics in fluid mechanics, Vol. 1: Incompressible models
- J. E. Beasley (ed.): Advances in linear and integer programming
- L. W. Beineke and R. J. Wilson (eds): Graph connections: Relationships between graph theory and other areas of mathematics
- I. Anderson: Combinatorial designs and tournaments
- G. David and S. W. Semmes: Fractured fractals and broken dreams
- Oliver Pretzel: Codes and algebraic curves
- M. Karpinski and W. Rytter: Fast parallel algorithms for graph matching problems
- P.-L. Lions: Mathematical topics in fluid mechanics, Vol. 2: Compressible models
- W. T. Tutte: Graph theory as I have known it
- Andrea Braides and Anneliese Defranceschi: Homogenization of multiple integrals
- Thierry Cazenave and Alain Haraux: An introduction to semilinear evolution equations
- J. Y. Chemin: Perfect incompressible fluids
- Giuseppe Buttazzo, Mariano Giaquinta and Stefan Hildebrandt: One-dimensional variational problems: an introduction
- Alexander I. Bobenko and Ruedi Seiler: Discrete integrable geometry and physics
- Doina Cioranescu and Patrizia Donato: An introduction to homogenization
- E. J. Janse van Rensburg: The statistical mechanics of interacting walks, polygons, animals and vesicles
- S. Kuksin: Hamiltonian partial differential equations
- Alberto Bressan: Hyperbolic systems of conservation laws: the one-dimensional Cauchy problem
- B. Perthame: Kinetic formulation of conservation laws
- A. Braides: Gamma-convergence for beginners
- Robert Leese and Stephen Hurley: Methods and algorithms for radio channel assignment
- Charles Semple and Mike Steel: Phylogenetics
- Luigi Ambrosio and Paolo Tilli: Topics on analysis in metric spaces 26. Eduard Feireisl: Dynamics of viscous compressible fluids
- Antonín Novotný and Ivan Straškraba: Introduction to mathematical theory of compressible flow
- 4.11.1 The method of contractive mapping A mapping F : X → X is called contractive if there exists a constant q ∈ [0, 1) such that REFERENCES
- Adams, R. A. (1975). Sobolev Spaces. Academic Press, New York.
- Agmon, S., Douglis, A., and Nirenberg, L. (1959). Estimates near the boundary for solutions of elliptic partial differential equations satisfying general bound- ary conditions I. Commun. on Pure and Appl. Math., 12, 623-727.
- Aizicovici, S. and Feireisl, E. (2003). On the long-time behavior of compressible fluid flows subjected to highly oscillating external forces. Czechoslovak Math. J., 53(3), 757-767.
- Alinhac, S. (1993). Temps de vie des solutions régulières des équations com- pressibles axisymétriques en dimension deux. Inventiones Mathematicae, 111, 625-670.
- Alinhac, S. (1995). Blowup for Nonlinear Hyperbolic Equations. Birkhäuser, Boston.
- Amann, H. (1995). Linear and Quasilinear Parabolic Problems, Volume I, II. Birkhäuser, Basel.
- Aze, D. (1997). Elements d'analyse fonctionnelle convexe et variationnelle. Ellipses, Paris.
- Babenko, K.I. (1973). On stationary solutions of the problem of flow past a body of a viscous compressible fluid. Mat. Sbornik , 91(133)(1), 1-25.
- Barták, J., Herrmann, L., Lovicar, V., and Vejvoda, O. (1991). Partial Differ- ential Equations of Evolution. Ellis Horwood, New York.
- Bause, M., Heywood, J., Novotný, A., and Padula, M. (2001). An interactive scheme for steady compressible viscous flows modified to treat large potential forces. In Math. Fluid Mech. (ed. Birkhäuser), pp. 27-46. Birkhäuser, Basel.
- Bause, M., Heywood, J., and Novotný, A. (2003). On some approximation schemes for steady compressible viscous flow. J. Math. Fluid Mech., 5, 201- 230. Beirão da Veiga, H. (1987). An L p -theory for the n-dimensional, stationary, compressible Navier-Stokes equations, and incompressible limit for compress- ible fluids. The equilibrium solutions. Comm. Math. Phys., 109, 229-248.
- Berezansky, Y. M., Sheffel, Z. G., and Us, G. F. (1991). Functional Analysis I,II. Operator Theory Advances and Applications, Volume 85. Birkhäuser, Basel.
- Bergh, J. and Löfström (1976). Interpolation Spaces, An Introduction. Springer, Berlin.
- Bogovskii, M. E. (1980). Solution of some vector analysis problems connected with operators div and grad. Trudy Sem. S.L. Soboleva, 80(1), 5-40. In Russian.
- Bourdaud, G. (1988). Analyse fonctionnelle dans l'espace euclidien. L'Univer- sité Paris VII, Paris. REFERENCES
- Bressan, A. (2000). Hyperbolic Systems of Conservation Laws. The One- dimensional Cauchy Problem. Oxford Lecture Series. Oxford University Press, Oxford.
- Bressan, A. and Colombo, R. M. (1995). The semigroup generated by 2 × 2 conservation laws. Arch. Rat. Mech. Anal., 133, 1-75.
- Brezis, H. (1973). Opérateurs maximaux monotones et semi-groupes de con- tractions dans les espaces de Hilbert. North Holland, Amsterdam.
- Brezis, H. (1987). Analyse fonctionnelle, théorie et applications. Masson, Paris.
- Calderón, A. P. and Zygmund, A. (1956). On singular integrals. Amer. J. Math., 78, 289-309.
- Calderón, A. P. and Zygmund, A. (1957). Singular integral operators and dif- ferential equations. Amer. J. Math., 79, 901-921.
- Chang, I. D. and Finn, R. (1961). On the solutions of a class of equations in continuum mechanics with applications to Stokes paradox. Arch. Rat. Mech. Anal., 7, 388-441.
- Chemin, Y. (1990). Dynamique des gaz à masse totale finie. Asympt. Anal., 3, 215-220.
- Chen, G.-Q. (1997). Remarks on global solutions to compressible Euler equa- tions with spherical symmetry. Proc. Roy. Soc. Edinburgh A, 127, 243-259.
- Chen, G.-Q. and Dafermos, C. M. (1995). The vanishing viscosity method in the one-dimensional thermoelasticity. Trans. Amer. Math. Soc., 347, 531-541.
- Chen, G.-Q., Frid, H., and Li, Y. (2002). Uniqueness and stability of Riemann solutions with large oscillations in gas dynamics. Commun. Math. Phys., 228(2), 201-218.
- Chen, G.-Q. and Glimm, J. (1996). Global solution to the compressible Euler equations with geometrical structure. Commun. Math. Phys., 179, 153-193.
- Chen, G.-Q. and LeFloch, P. (2000). Compressible Euler equations with general pressure law. Arch. Rat. Mech. Anal., 153(3), 221-259.
- Chen, G.-Q. and Wang, D. (2001). The Cauchy problem for the Euler equa- tions for compressible fluids. In Handbook of Mathematical Fluid Dynamics, Volume 1, pp. 421-543. North-Holland, Amsterdam.
- Choe, H. J. and Kim, H. (2003). Strong solutions of the Navier-Stokes equations for isentropic compressible fluids. J. Diff. Equations, 190, 504-523.
- Chorin, A. J. and Marsden, J. E. (1979). A Mathematical Introduction to Fluid Mechanics. Springer, New York.
- Clark, D. C. (1971). The vorticity at infinity for solutions of the stationary Navier-Stokes equations in exterior domains. Indiana Univ. Math. J., 20, 633-654.
- Coifman, R., Lions, P.-L., Meyer, Y., and Semmes, S. (1993). Compensated compactness and hardy spaces. J. Math. Pure Appl., 72, 247-86.
- Coifman, R. and Meyer, Y. (1975). On commutators of singular integrals and bilinear singular integrals. Trans. Amer. Math. Soc., 212, 315-331.
- Coifman, R. R., Rochberg, R., and Weiss, G. (1976). Factorization theorems for Hardy spaces in several variables. Ann. Math., 103, 611-635.
- Courant, R. and Friedrichs, K. O. (1962). Supersonic Flow and Shock Waves. Interscience Publishers, New York.
- Dafermos, C. (2000). Hyperbolic Conservation Laws in Continuum Physics. Springer, Heidelberg.
- Danchin, R. (2001). Global existence in critical spaces for flows of compressible viscous and heat-conductive gases. Arch. Rat. Mech. Anal., 160, 1-39.
- Desjardins, B. (1997). Regularity of weak solutions of compressible isentropic Navier-Stokes equations. Commun. Partial Diff. Equations, 22, 977-1008.
- Desjardins, B. and Chi-Kun, L. (1999). A survey of the compressible Navier- Stokes equations. Taiwanese J. Math., 3(2), 123-37.
- Ding, X., Chen, G.-Q., and Lero, P. (1985). Convergence of the Lax-Friedrichs scheme for the isentropic gas dynamics I-II. Acta Mathematica Scientia Series, 5, 483-500, 501-540.
- DiPerna, R. J. (1983a). Convergence of approximate solutions to conservation laws. Arch. Rat. Mech. Anal., 82, 27-70.
- DiPerna, R. J. (1983b). Convergence of the viscosity method for isentropic gas dynamics. Commun. in Math. Phys., 91, 1-30.
- DiPerna, R. J. and Lions, P.-L. (1989). Ordinary differential equations, trans- port theory, and Sobolev spaces. Inventiones Mathematicae, 98, 511-547.
- Doktor, A. (1977). Global solution of mixed problem for a certain system of nonlinear conservation laws. Czechoslovak Math. J., 27, 69-95.
- Dunford, N. and Schwartz, J. T. (1958). Linear Operators, Volume I. Inter- science Publishers, New York, London.
- Dunford, N. and Schwartz, J. T. (1963). Linear Operators, Volume II. Inter- science Publishers, New York, London.
- Dutto, P. and Novotný, A. (2001). Physically reasonable solutions to steady compressible Navier-Stokes equations in 2d exterior domains with nonzero velocity at infinity. J. Math. Fluid Mech., 3, 99-138.
- Edwards, R. E. (1965). Functional Analysis, Theory and Applications. Holt, Rinehart and Winston, New York.
- Erban, R. (2001). On the static-limit solutions to the Navier-Stokes equations of compressible flow. J. Math. Fluid Mech., 3, 393-408.
- Evans, L. C. (1992). Measure Theory and Fine Properties of Functions.C R C Press, Boca Raton, FL.
- Evans, L. C. (1998). Partial Differential Equations in Mathematics, Volume 19. AMS, Providence.
- Farwig, R. (1989). Stationary solutions of the Navier-Stokes equations with slip boundary conditions. Commun. Partial Diff. Equations, 14, 1579-1606.
- Farwig, R. (1992). The stationary exterior 3-d problem of Oseen and Navier-Stokes equations in anisotropically weighted Sobolev spaces. Math. Zeitschrift, 221, 409-447.
- Feireisl, E. (2000). The dynamical systems approach to the Navier-Stokes equa- tions of compressible fluid. In Advances in Math. Fluid Mech. (ed. J. Málek, J. Nečas, and M. Rokyta). Springer, Berlin.
- Feireisl, E. (2001). On compactness of solutions to the compressible isentropic Navier-Stokes equations when the density is not square integrable. Comment. Math. Univ. Carolinae, 42(1), 83-98.
- Feireisl, E. (2002). Compressible Navier-Stokes equations with a non-monotone pressure law. J. Diff. Equations, 184, 97-108.
- Feireisl, E. (2003a). Dynamics of Compressible Flow. Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, Oxford.
- Feireisl, E. (2003b). On the motion of rigid bodies in a viscous compressible fluid. Arch. Rat. Mech. Anal., 167, 281-308.
- Feireisl, E. (2003c). Propagation of oscillations, complete trajectories and at- tractors for compressible flows. Nonlinear Differ. Equ. Appl., 10, 33-55.
- Feireisl, E. (2003d). Shape optimization in viscous compressible fluids. Appl. Math. and Optimization, 47, 59-78.
- Feireisl, E., Matušů-Nečasová, Š., Petzeltová, H., and Straškraba, I. (1999). On the motion of a viscous compressible fluid driven by a time-periodic external force. Arch. Rat. Mech. Anal., 149, 69-96.
- Feireisl, E., Novotný, A., and Petzeltová, H. (2001). On the existence of glob- ally defined weak solutions to the Navier-Stokes equations of compressible isentropic fluids. J. Math. Fluid Mech., 3, 358-392.
- Feireisl, E., Novotný, A., and Petzeltová, H. (2002). On the domain dependence of solutions to the compressible Navier-Stokes equations of a barotropic fluid. Math. Meth. Appl. Sci., 25, 1045-1073.
- Feireisl, E. and Petzeltová, H. (1998). On the zero-velocity limit solutions to the Navier-Stokes equations of compressible flows. Manuscr. Math., 97, 109-116.
- Feireisl, E. and Petzeltová, H. (1999). Large-time behaviour of solutions to the Navier-Stokes equations of compressible flow. Arch. Rat. Mech. Anal., 150, 77-96.
- Feireisl, E. and Petzeltová, H. (2000). On integrability up to the boundary of the weak solutions of the Navier-Stokes equations of compressible flows. Commun. Partial Diff. Equations., 25(3-4), 755-767.
- Feireisl, E. and Petzeltová, H. (2001a). Asymptotic compactness of global tra- jectories generated by the Navier-Stokes equations of compressible fluid. J. Diff. Equations., 173, 390-409.
- Feireisl, E. and Petzeltová, H. (2001b). Bounded absorbing sets for the Navier- Stokes equations of compressible fluid. Commun. Partial Diff. Equations, 26(7 &8 ) , 1133-1144.
- Feistauer, M. (1993). Mathematical Methods in Fluid Dynamics. Longman Scientific & Technical, Harlow.
- Feistauer, M., Felcman, J., and Straškraba, I. (2003). Mathematical and Com- putational Methods for Compressible Flow. Oxford University Press, Oxford.
- Filatov, A. N. and Sharova, L. V. (1976). Integral Inequalities in Theory of Nonlinear Oscillations. Izd. Nauka, Moscow. In Russian.
- Finn, R. (1959). Estimates in infinity for stationary solutions of the Navier- Stokes equations. Bull. Math. Soc. Sci. Math. Phys. R.P.R., 3(53), 387-418.
- Finn, R. (1965). On the exterior stationary problem for the Navier-Stokes equations and associated perturbation problems. Arch. Rat. Mech. Anal., 19, 363-406.
- Fonseca, I. and Gangbo, W. (1995). Degree Theory in Analysis and Applica- tions. Oxford Science Publications. Oxford University Press, Oxford.
- Frehse, J., Goj, S., and Málek, J. (2002). A Stokes-like system for mixtures. Rheinische Friedrich-Wilhelms-Universität Bonn, SFB 611, no. 7.
- Friedrichs, K. O. (1948). Nonlinear hyperbolic differential equations in two independent variables. Amer. J. Math., 70, 555-558.
- Friedrichs, K. O. (1954). Symmetric hyperbolic linear differential equations. Commun. on Pure and Appl. Math., 7, 345-392.
- Gajewski, H., Gröger, K., and Zacharias, K. (1974). Nichtlineare Operatorgle- ichungen und Operatordifferentialgleichungen. Academie Verlag, Berlin.
- Galdi, G. P. (1994a). An Introduction to the Mathematical Theory of Navier- Stokes Equations, Volume 1. Springer, Berlin.
- Galdi, G. P. (1994b). An Introduction to the Mathematical Theory of the Navier-Stokes Equations, Vol.I, II, Volume 38, 39 of Springer Tracts in Nat- ural Philosophy. Springer.
- Glimm, J. (1965). Solutions in the large for nonlinear hyperbolic systems of equations. Commun. on Pure and Appl. Math., 18(4), 697-715.
- Godlewski, E. and Raviart, P. A. (1996). Numerical Approximation of Hyper- bolic Systems of Conservation Laws. Springer, Berlin. Godunov, S. K. and Romenskij, E. J. (1998). Elements of Continuum Mechanics and Conservation Laws. Nauchnaya kniga. Novosibirsk. In Russian.
- Grassin, M. and Serre, D. (1997). Existence de solutions globales et régulières aux équations d'Euler pour un gaz parfait isentropique. C.R. Acad. Sci. Paris, 325, 721-726.
- Hewitt, T. and Stromberg, K. (1975). Real and Abstract Analysis. Springer, New York.
- Heywood, J. G. (1976). On uniqueness questions in the theory of viscous flow. Acta Math., 136, 61-102.
- Heywood, J. G. and Padula, M. (1999). On the existence and uniqueness the- ory for steady compressible viscous flow. In Advances in Mathematical Fluid Mechanics. Birkhäuser, Basel.
- Hoff, D. (1992a). Global well-posedness of the cauchy problem for nonisentropic gas dynamics with discontinuous initial data. J. Diff. Eqs., 95, 33-73.
- Hoff, D. (1992b). Spherically symmetric solutions of the navier-stokes equations for compressible, isothermal flow with large, discontinuous initial data. Ind. Univ. Math. J., 41, 1225-1302.
- Hoff, D. (1995a). Global solutions of the Navier-Stokes equations for multidi- mensional, compressible flow with discontinuous initial data. J. Diff. Equa- tions, 120, 215-254.
- Hoff, D. (1995b). Strong convergence to global solutions for multidimensional flows of compressible, viscous fluids with polytropic equations of state and discontinuous initial data. Arch. Rat. Mech. Anal., 132, 1-14. REFERENCES
- Hoff, D. (1997). Discontinuous solutions of the Navier-Stokes equations for multidimensional heat-conducting flows. Arch. Rational Mech. Anal., 139, 303-354.
- Hsiao, L. (1997). Quasilinear Hyperbolic Systems and Dissipative Mechanisms. World Scientific, Singapore.
- Jiang, S. (1998). Global solutions of the Cauchy problem for a viscous polytropic ideal gas. Ann. Scuola Norm. Sup. Pisa Cl Sci., XXVI(4), 47-74.
- Jiequan, L., Tong, Z., and Shuli, Y. (1998). The Two-Dimensional Riemann Problem in Gas Dynamics, Volume 98 of Pitman Monographs. Longman, Harlow.
- Jin, B. J. and Padula, M. (2003). Steady flows of compressible fluids in a rigid container with upper free boundary. To appear in Math. Annalen.
- John, F. (1974). Formation of singularities in one-dimensional wave propaga- tion. Commun. on Pure and Appl. Math., 27, 377-405.
- John, F. (1981). Blow-up for quasilinear wave equations in three space dimen- sions. Commun. on Pure and Appl. Math., 34, 29-51.
- Kato, T. (1972). Nonstationary flows of viscous and ideal fluids in IR 3 . J. Funct Anal., 9, 296-305.
- Kato, T. (1975). The Cauchy problem for quasilinear symmetric hyperbolic systems. Arch. Rat. Mech. Anal., 58, 181-205.
- Kobayashi, T. and Shibata, Y. (1998). On the Oseen equation in exterior domains. Math. Annalen, 310, 1-45.
- Kolmogorov, A. N. and Fomin, S. V. (1972). Elements of the Theory of Func- tions and Functional Analysis (3rd edn). Nauka, Moscow. Russian.
- Kračmar, S., Novotný, A., and Pokorný, M. (2001). Estimates of Oseen kernels in weighted L p -spaces. J. Math. Soc. Japan, 53(1), 59-111.
- Krejč´ı, P. (1996). Hysteresis, Convexity and Dissipation in Hyperbolic Equa- tions, Volume 8 of Mathematical Sciences and Applications. Gakkōtosho, Tokyo.
- Krejč´ı, P. and Straškraba, I. (1997). A uniqueness criterion for the Riemann problem. Hiroshima Math. J., 27(2), 307-346.
- Kruzhkov, S. (1970). First order quasilinear equations with several space vari- ables. Math. USSR Sb., 10, 217-243.
- Kufner, A., John, O., and Fuč´ık, S. (1977). Function Spaces. Academia, Prague.
- Kurzweil, J. (1986). Ordinary Differential Equations. Introduction to the Theory of Ordinary Differential Equations in the Real Domain, Volume 13 of Studies in Appl. Math. Elsevier, Amsterdam.
- Kweon, J. R. and Kellogg, R. B. (2003). Regularity of solutions to the Navier- Stokes system for compressible flows on a polygon. submitted SIAM J. Math. Anal.
- Ladyzhenskaya, O. A. and Solonnikov, V. A. (1976). On some problems of vector analysis and generalized formulations of boundary value problems for the Navier-Stokes equations. Zapiski Nauchn. Sem. LOMI , 59, 81-116. English Transl.: J. Sov. Math., 10,(2), 257-285 (1978).
- Ladyzhenskaya, O. A. and Solonnikov, V. A. (1977). On the solvability of boundary value problems for the Navier-Stokes equations in regions with non- compact boundaries. Vestnik Leningrad. Univ., 13(3), 39-47. English Transl.: Vestnik Leningrad. Univ. Math., 10, 271-280 (1982).
- Landau, L. D. and Lifschitz, E. M. (1959). Fluid Mechanics. Pergamon Press, Oxford.
- Lax, P. (1953). Nonlinear hyperbolic equations. Commun. on Pure and Appl. Math., 6, 231-258.
- Lax, P. D. (1954). Weak solutions of nonlinear hyperbolic equations and their numerical computation. Commun. on Pure and Appl. Math., 7, 159-193.
- Li, T. (1994). Global Classical Solutions for Quasilinear Hyperbolic Systems. Wiley, Chichester.
- Li, T. and Yu, W. (1985). Boundary Value Problems for Quasilinear Hyperbolic Systems, Volume V. Duke Univ. Math. Ser., Durham NC, Duke University.
- Lieb, E. H. and Loss, M. (1997). Analysis, Graduate Studies in Mathematics, Volume 14. AMS, Providence.
- Lin, L.-W. (1987). On the vacuum state for the equations of isentropic gas dynamics. J. Math. Anal. Appl., 121, 406-425.
- Lions, J.-L. and Magenes, E. (1968). Problèmes aux limites non homogènes et applications. Dunod, Paris.
- Lions, P.-L. (1993a). Compacité des solutions des équations de Navier-Stokes compressibles isentropiques. C.R. Acad. Sci. Paris, 317, 115-120.
- Lions, P.-L. (1993b). Existence globale de solutions pour les équations de Navier-Stokes compressibles isentropiques. C.R. Acad. Sci. Paris, 316, 1335- 1340.
- Lions, P.-L. (1998). Mathematical Topics in Fluid Mechanics, Volume 2 of Oxford Lecture Series in Mathematics and its Applications. Clarendon Press, Oxford.
- Lions, P.-L. (1999). Bornes sur la densité pour les équations de Navier-Stokes compressible isentropiques avec conditions aux limites de Dirichlet. C.R. Acad. Sci. Paris, 328, 659-662.
- Lions, P. L., Perthame, B., and Souganidis, P. E. (1996). Existence and stabil- ity of entropy solutions for the hyperbolic systems of isentropic gas dynam- ics in Eulerian and Lagrangian coordinates. Commun. on Pure and Appl. Math., 49(6), 599-638.
- Liu, T.-P. (1979). The development of singularities in the nonlinear waves for quasilinear hyperbolic partial differential equations. J. Diff. Eqs., 33, 92-111.
- Lizorkin, P. I. (1952). (L p ,L q )-multipliers of Fourier integrals. Dokl. Akad. Nauk SSSR, 4, 808-811. Engl. transl.: Soviet Math. Dokl. 4 (1963), 1420- 1424.
- Lizorkin, P. I. (1969). About Fourier multipliers in L p,θ .InImbedding Theorems and Applications, Baku 1966, Moscow, pp. 137-142. Nauka.
- Lizorkin, P. I. and Nikol'skii, S.M. (1965). Classification of differentiable func- tions on the basis of spaces with dominating mixed derivative. Trudy Mat. Inst. Steklov , 77, 143-167.
- Ljusternik, L. A. and Sobolev, V. I. (1974). Elements of Functional Analysis. Hindustan Publ. Corp., Delphi-New York.
- Lovicar, V. and Straškraba, I. (1991). Remark on cavitation solutions of sta- tionary compressible Navier-Stokes equations in one dimension. Czechoslovak Mathematical Journal , 41(4), 653-662.
- Lu, Y. (2003). Hyperbolic Conservation Laws and the Compensated Compact- ness, Volume 128 of Monographs and Surveys in Pure and Appl. Math. Chap- man & Hall, New York.
- Lukeš, J. and Malý, J. (1995). Measure and Integral. Matfyzpress, Fac. of Math. and Phys.,Charles Univ., Prague.
- Lunardi, A. (1995). Analytic Semigroups and Optimal Regularity in Parabolic Problems. Birkhäuser, Basel.
- Majda, A. (1984). Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables. Springer, New York.
- Makino, T., Kawashima, S., and Ukai, S. (1986). Sur la solution à support compact des équations d'Euler compressible. Japan J. Appl. Math., 3, 249- 257. Makino, T., Mizohata, K., and Ukai, S. (1992). The global weak solutions of the compressible Euler equations with spherical symmetry. Japan J. Indust. Appl. Math., 9, 431-449.
- Málek, J. and Nečas, J. (1996). A finite-dimensional attractor for the three dimensional flow of incompressible fluid. J. Diff. Equations, 127, 498-518.
- Málek, J., Nečas, J., Rokyta, M., and Růžička, M. (1996). Weak and Measure- Valued Solutions to Evolutionary PDE's. Chapman and Hall, London.
- Matsumura, A. and Nishida, T. (1979). The initial value problem for the equa- tions of motion of compressible viscous and heat-conductive fluids. Proc. Japan Acad. Ser. A Math. Sci., 55, 337-342.
- Matsumura, A. and Nishida, T. (1980). The initial value problem for the equa- tions of motion of viscous and heat-conductive gases. J. Math. Kyoto Univ., 20, 67-104.
- Matsumura, A. and Nishida, T. (1989). Exterior stationary problems for the equations of motion of compressible heat-conductive fluids. In Proc. Equadiff 89 (ed. C. M. D. et al.), Amsterdam, pp. 473-479. Dekker.
- Matsumura, A. and Padula, M. (1992). Stability of stationary flows of com- pressible fluids subject to large external potential forces. Stab. and Appl. Anal. in Cont. Media, 2, 183-202.
- Matsumura, A. and Yamagata, N. (2001). Global weak solutions of the Navier- Stokes equations for multidimensional compressible flow subject to large ex- ternal forces. Osaka J. Math., 38, 399-418.
- Matušů, Š., Okada, M., and Makino, T. (1997). Free boundary problem for the equation of spherically symmetric motion of viscous gas (iii). Japan J. Industrial and Appl. Math., 14(2), 199-213.
- Mitrea, D. and Mitrea, M. (2001). Layer Potentials, the Hodge Laplacian, and Global Boundary Problems in Nonsmooth Riemannian Manifolds. AMS, Providence RI.
- Mizohata, K. (1994). Equivalence of Eulerian and Lagrangian weak solutions of the compressible Euler equations with spherical symmetry. Kodai Math. J., 17, 69-81.
- Mucha, P. B. and Zajaczkowski, W. (2002). Global existence of solutions of the Dirichlet problem for the compressible Navier-Stokes equations. ZAMM To appear.
- Murat, F. (1978). Compacité par compensation. Annali della Scuola Normale Superiore di Pisa, 5, 489-507.
- Navier, H. (1827). Mémoire sur les lois du mouvement des fluides. Mem. Acad. Sci. Inst. de France, 2(6), 389-440.
- Nazarov, S., Novotný, A., and Pileckas, K. (1996). On steady compress- ible Navier-Stokes equations in plane domains with corners. Math. Anna- len, 304(1), 121-150.
- Nečas, J. (1967). Les méthodes directes en théorie des équations elliptiques. Academia, Prague.
- Nirenberg, L. (1974). Topics in Nonlinear Functional Analysis. Courant Insti- tute of Mathematical Sciences, New York University, New York.
- Nitsche, J. A. (1981). On Korn's second inequality. RAIRO Anal. Numér., 15, 237-248.
- Novo, S. (2003). The compressible Navier-Stokes equations with influx-outflux boundary conditions. J. Math. Fluid Mech. To appear.
- Novo, S. and Novotný, A. (2002). On the existence of weak solutions to steady compressible Navier-Stokes equations when the density is not square inte- grable. J. Math. Kyoto Univ., 42(3), 531-550.
- Novo, S. and Novotný, A. (2003a). Existence of weak solutions to compressible barotropic Navier-Stokes equations in domains with several conical exits. Preprint ANLA, Université de Toulon et du Var.
- Novo, S. and Novotný, A. (2003b). Some notes to the existence of weak solutions to the steady compressible Navier-Stokes equations in bounded domains with Lipschitz boundary. Preprint ANLA, Université de Toulon et du Var.
- Novo, S., Novotný, A., and Pokorný, M. (2003). Steady compressible isentropic Navier-Stokes equations in domains with noncompact boundaries. Preprint, Université de Toulon et du Var.
- Novotný, A. (1996). Some remarks about the compactness of steady compress- ible Navier-Stokes equations via the decomposition method. Comment. Math. Univ. Carolinae, 37(2), 305-342.
- Novotný, A. (1998). On the steady transport equation. In Advanced Topics in Theoretical Fluid Mechanics (ed. J. Málek, J. Nečas, and M. Rokyta), Volume 392 of Pitman Res. Notes in Math. Series, pp. 118-46. Longman, Essex.
- Novotný, A. and Padula, M. (1994). L p approach to steady flows of viscous compressible fluids in exterior domains. Arch. Rat. Mech. Anal , 126, 243-297. REFERENCES
- Novotný, A. and Padula, M. (1997). Physically reasonable solutions for steady compressible Navier-Stokes equations in 3d exterior domains (v ∞ = 0). Math. Annalen, 308, 439-489.
- Novotný, A., Padula, M., and Penel, P. (1996). Remark on the well posedness of the problem of a steady flow of viscous barotropic gas in a pipe. Commun. Partial Diff. Equations, 21, 23-24.
- Novotný, A. and Pileckas, K. (1998). Steady compressible Navier-Stokes equa- tions with large potential forces via a method of decomposition. Math. Meth. Appl. Sci., 21, 665-684.
- Novotný, A. and Straškraba, I. (2000). Stabilization of solutions to compressible Navier-Stokes equations. J. Math. Kyoto Univ., 40(2), 217-245.
- Novotný, A. and Straškraba, I. (2001). Convergence to equilibria for com- pressible Navier-Stokes equations with large data. Ann. di Mat. Pura ed Appl., CLXXIX(IV), 263-287.
- Padula, M. (1981). Existence and continuous dependence for solutions to the equations of a one-dimensional model in gas dynamics. Meccanica, 17, 128- 135.
- Padula, M. (1982). Existence and uniqueness for viscous steady compressible motions. In Proc. Sem. Fis. Mat., Dinamica dei Fluidi e dei gaz ionizzati, Trieste.
- Padula, M. (1986). Existence of global solutions for 2-dimensional viscous com- pressible flow. J. Funct. Anal., 69, 1-20.
- Padula, M. (1987). Existence and uniqueness for viscous, steady compressible motions. Arch. Rat. Anal., 77, 89-102.
- Padula, M. (1988a). Erratum. J. Funct. Anal., 76, 231-231.
- Padula, M. (1988b). Erratum. J. Funct. Anal., 77, 232-232.
- Padula, M. (1997). Steady flows of barotropic viscous fluids. In Classical Problems in Mechanics, Volume 1, pp. 253-345. Dipartimento di Matemat- ica Seconda Università di Napoli, Caserta.
- Penel, P. and Straškraba, I. (1999). Global behaviour of compressible fluid with a free boundary and large data. In Appl. Nonlin. Anal. (ed. A. Sequeira), pp. 427-442. Kluwer Academic, New York.
- Penel, P. and Straškraba, I. (2003). Global behavior of one-dimensional com- pressible flows with vanishing viscosity near vacuums. J. of Concrete and Applicable Math., 1(4), 1-17.
- Pileckas, K. (1980). On unique solvability of boundary value problems for the Stokes system of equations in domains with noncompact boundaries. Trudy Mat. Inst. Steklov , 147, 115-123. English Transl.: Proc. Mat. Inst. Steklov, 147(2),117-126.
- Pileckas, K. (1996). Recent advances in the theory of Stokes and Navier-Stokes equations in domains with noncompact boundaries. In Nonlinear Partial Dif- ferential Equations and their Applications, Volume 304 of Pitman Research Notes in Mathematics, pp. 30-85. Longman, Harlow. Collège de France Seminar.
- Pileckas, K. and Solonnikov, V. A. (1977). Certain spaces of solenoidal vectors and solvability of the boundary value problem for the Navier-Stokes system of equations in domains with nonocompact boundaries. Zapiski Nauchn. Sem. LOMI , 73, 136-151. English Transl.: J. Sov. Math., 34(6), 2101-2111.
- Plotnikov, P. I. and Sokolowski, J. (2002). On compactness domain depen- dence and existence of steady state solutions to compressible Navier-Stokes equations. Preprint, Univ. H. Poincaré, Nancy.
- Poisson, S. D. (1829). Mémoire sur les équations générales de l'équilibre et du mouvement des corps solides élastiques et des fluides. J. Ecole Polytech- nique, 13, 1-174.
- Rajagopal, K. R. and Tao, L. (1995). Mechanics of Mixtures, Volume 35 of Series on Advances in Mathematics for Applied Sciences. World Scientific, London.
- Rajagopal, K. R. and Truesdell, C. (1999). An Introduction to the Mechanics of Fluids. Birkhäuser, Boston.
- Rammaha, M. A. (1989). Formation of singularities in compressible fluids in two space dimensions. Proc. Amer. Math. Soc., 107, 705-714.
- Rudin, W. (1974). Real and Complex Analysis. McGraw-Hill, London, New York.
- Salvi, R. and Straškraba, I. (1993). Global existence for viscous compressible fluids and their behaviour as t →∞ . J. Fac. Sci. Univ. Tokyo Section IA Mathematics, 40(1), 17-52.
- Serre, D. (1991). Variation de grande amplitude pour la densité d'un fluid viscqueux compressible. Physica D, 48, 113-128.
- Serre, D. (1996). Systèmes de lois de conservation. Diderot, Paris. English translation: Systems of Conservation Laws, volumes 1-2, Cambridge University Press, 1999.
- Serre, D. (1997). Solutions classiques globales des équations d'Euler pour un fluide parfait compressible. Annales de l'Institut Fourier, Grenoble, 47, 139- 153.
- Shearer, J. W. (1994). Global existence and compactness in L p for the quasi- linear wave equation. Commun. in Partial Diff. Equations, 19, 1829-1877.
- Sideris, T. C. (1985). Formation of singularities in three-dimensional compress- ible fluids. Commun. in Math. Phys., 101, 475-485.
- Sideris, T. C. (1991). The lifespan of smooth solutions to the three-dimensional Euler equations and the incompressible limit. Indiana Univ. Math. J., 40, 535-550.
- Sideris, T. C. (1997). Delayed singularity formation in 2D compressible flow. Amer. J. Math., 119, 371-422.
- Šilhavý, M. (1997). The Mechanics and Thermodynamics of Continuum Media. Springer, Berlin.
- Simader, C. G. (1990). The weak weak Dirichlet and Neumann problem for the Laplacian in L q for bounded and exterior domains. In Applica- tions of Nonlinear Analysis, Function Spaces and Applications (ed. M. Krbec, A. Kufner, B. Opic, and J. Rákosník), Volume 4, pp. 180-223. Teubner, Leipzig.
- Simader, C. G. and Sohr, H. (1992a). A new approach to the Helmholtz de- composition and the Neumann problem in L q -spaces for bounded and exterior domains. In Mathematical Problems Relating to the Navier-Stokes Equations (ed. G. P. Galdi), Volume 11 of Advances in Mathematics for Applied Sciences, pp. 1-34. World Scientific, London.
- Simader, C. G. and Sohr, H. (1992b). The weak Dirichlet problem for ∆ in L q in bounded and exterior domains. Stab. Anal. Cont. Media, 2, 183-202.
- Simader, C. G. and Sohr, H. (1996). The Dirichlet Problem for the Laplacian in Bounded and Ubounded Domains, Volume 360 of Pitman Res. Notes in Math. Longman, Essex.
- Simon, J. (1987). Compact sets in the space L p (0,T; B). Ann. Mat. Pura Appl., 146, 65-96.
- Slemrod, M. (1996). Resolution of spherical piston problem for compressible isentropic gas dynamics via a self-similar viscous limit. Proceedings of the Royal Society of Edinburgh, 126A, 1309-1340.
- Smoller, J. (1983). Shock Waves and Reaction-Diffusion Equations. Springer, New York.
- Solonnikov, V. A. (1981). On the solvability of boundary and initial boundary value problems for the Navier-Stokes system in domains with noncompact boundaries. Pacific J. Math., 93(2), 443-458.
- Solonnikov, V. A. (1983). Stokes and Navier-Stokes equations in domains with noncompact boundaries. In Collège de France Seminar, 4, Volume 84 of Pit- man Res. Notes in Math., pp. 240-349. Longman, Essex.
- Stein, E. M. (1970). Singular Integrals and Differentiability Properties of Func- tions. Princeton University Press.
- Stokes, G. G. (1845). On the theories of the integral friction of fluids in motion. Trans. Cambridge Phil. Soc., 8, 287-319.
- Straškraba, I. (1984). A note on critical times of 2 × 2 quasilinear hyperbolic systems. Aplikace matematiky, 29, 294-302.
- Straškraba, I. (1996). Asymptotic development of vacuums for 1-dimensional Navier-Stokes equations of compressible flow. Nonlinear World , 3, 519-535.
- Straškraba, I. (1997). Global analysis of 1-D Navier-Stokes equations with den- sity dependent viscosity. In Navier-Stokes Equations and Related Nonlinear Problems (ed. H. A. et al.), pp. 371-390. NSEC-6, VSP Utrecht, TEV Vilnius, Palanga, Lithuania.
- Straškraba, I. (1998). Large time behavior of solutions to compressible Navier- Stokes equations. In Navier-Stokes Equations: Theory and Numerical Methods (ed. R. Salvi), Volume 388, pp. 125-138. Longman, Edinburgh.
- Straškraba, I. and Valli, A. (1988). Asymptotic behaviour of the density for one-dimensional Navier-Stokes equations. Manuscr. Math., 62, 401-416.
- Straškraba, I. and Zlotnik, A. (2001). On global behaviour of solutions to equations of one-dimensional viscous compressible barotropic fluid with vari- able viscosity. Dokl. Russian Acad. Sci., 378(6), 737-742.
- Straškraba, I. and Zlotnik, A. (2002). On a decay rate for 1d-viscous compress- ible barotropic fluid equations. J. Evol. Equ., 2, 69-96.
- Straškraba, I. and Zlotnik, A. (2003a). Global behavior of 1d-viscous com- pressible barotropic fluid with a free boundary and large data. J. Math. Fluid Mech., 5, 119-143.
- Straškraba, I. and Zlotnik, A. (2003b). Global properties of solutions to 1d- viscous compressible barotropic fluid equations with density dependent vis- cosity. ZAMP , 54, 593-607.
- Tanabe, H. (1961). Evolution equations of parabolic type. Japan Acad. Proc., 37, 610-613.
- Tanaka, N. and Tani, A. (2003). Surface waves for a compressible fluid. J. Math. Fluid Mech., 5, 303-363.
- Tartar, L. (1975). Compensated compactness and applications to partial dif- ferential equations. In Nonlin. Anal. and Mech. (ed. L. Knopps), Res. Notes in Math. 39, Boston, pp. 136-211. Heriot-Watt Sympos.: Pitman.
- Taylor, A. E. (1967). Introduction to Functional Analysis. Wiley, New York.
- Temam, R. (1983). Problèmes mathématiques en plasticité. Gautiers-Villars, Paris.
- Torchinsky, A. (1986). Real-Variable Methods in Harmonic Analysis, Volume 123 of Pure and Applied Mathematics. Academic Press, New York.
- Triebel, H. (1978). Interpolation Theory, Function Spaces, Differential Opera- tors. North-Holland, Amsterdam.
- Triebel, H. (1995). Interpolation Theory, Function Spaces, Differential Opera- tors. Barth, Heidelberg.
- Vaigant, V. A. (1994). An example of the nonexistence with respect to time of global solutions of Navier-Stokes equations for compressible viscous barotropic fluid. Dokl. Acad. Nauk , 339(2), 155-156. Russian.
- Vaigant, V. A. and Kazhikhov, A. V. (1995). On the existence of global so- lutions to two-dimensional Navier-Stokes equations of compressible viscous fluid. Sibirskij Mat. Z., 36, 1108-1141. Russian.
- Valli, A. (1983). Periodic and stationary solutions for compressible Navier- Stokes equations via a stability method. Ann. Scuola Normale Sup. Pisa, 4(1), 607-646.
- Valli, A. (1987). On the existence of stationary solutions to compressible Navier-Stokes equations. Ann. Inst. H. Poincaré, Anal. Non-Lin., 4, 99-113.
- Valli, A. (1992). Mathematical results for compressible flows. In Mathematical Topics in Fluid Mechanics (ed. J. Rodrigues and A. Sequeira), Volume 274, pp. 193-229. Wiley, New York.
- Valli, A. and Zajaczkowski, W. M. (1986). Navier-Stokes equations for com- pressible fluids: global existence and qualitative properties of the solutions in the general case. Commun. in Math. Phys., 103, 256-296.
- Visintin, A. (1984). Strong convergence results related to strong convexity. Commun. Partial Diff. Equations, 9(5), 439-466.
- Vladimirov, V. S. (1967). Equations of Mathematical Physics. Nauka, Moscow.
- Volpert, A. I. (1967). The space BV and quasilinear equations. Mat. USSR Sbornik , 2, 225-267.
- Wagner, D. H. (1987). Equivalence of the Euler and Lagrangian equations of gas dynamics for weak solutions. J. Diff. Eqs., 68, 118-136.
- Whitham, G. B. (1974). Linear and Nonlinear Waves. Wiley, New York.
- Xin, Z. P. (1998). Blowup of smooth solutions to the compressible Navier- Stokes equation with compact density. Commun. on Pure and Appl. Math., LI, 229-240.
- Yi, Z. (1992). An L p theorem for compensated compactness. Proc. Royal Soc. Edinburgh, 122 A, 177-189.
- Yosida, K. (1974). Functional Analysis. Springer, New York.
- Zeidler, E. (1985-89). Nonlinear Functional Analysis and its Applications, Volumes 1-4. Springer, New York.
- Zhang, T. and Zheng, Y. (1997). Exact spiral solutions of two dimensional compressible Euler equations. Discrete and Continuous Dynamical Systems, 3, 117-133.
- Zhang, T. and Zheng, Y. (1998). Axisymmetric solutions of the Euler equations for square polytropic gases. Arch. Rat. Mech. Anal., 142, 253-279.
- Ziemer, W. P. (1989). Weakly Differentiable Functions. Springer, New York.