Interstellar Objects in the Solar System: 1. Isotropic Kinematics from the Gaia Early Data Release 3 (original) (raw)

1I/'Oumuamua (or 1I) and 2I/Borisov (or 2I), the first InterStellar Objects (ISOs) discovered passing through the solar system, have opened up entirely new areas of exobody research. Finding additional ISOs and planning missions to intercept or rendezvous with these bodies will greatly benefit from knowledge of their likely orbits and arrival rates. Here, we use the local velocity distribution of stars from the Gaia Early Data Release 3 Catalogue of Nearby Stars and a standard gravitational focusing model to predict the velocity dependent flux of ISOs entering the solar system. With an 1I-type ISO number density of ∼0.1 AU −3 , we predict that a total of ∼6.9 such objects per year should pass within 1 AU of the Sun. There will be a fairly large high-velocity tail to this flux, with half of the incoming ISOs predicted to have a velocity at infinity, v ∞ , > 40 km s −1. Our model predicts that ∼92% of incoming ISOs will be residents of the galactic thin disk, ∼6% (∼4 per decade) will be from the thick disk, ∼1 per decade will be from the halo and at most ∼3 per century will be unbound objects, ejected from our galaxy or entering the Milky Way from another galaxy. The rate of ISOs with very low v ∞ 1.5 km s −1 is so low in our model that any incoming very low velocity ISOs are likely to be previously lost solar system objects. Finally, we estimate a cometary ISO number density of ∼7 × 10 −5 AU −3 for 2I type ISOs, leading to discovery rates for these objects possibly approaching once per decade with future telescopic surveys.

A brief visit from a red and extremely elongated interstellar asteroid

Nature, 2017

None of the approximately 750,000 known asteroids and comets in the Solar System is thought to have originated outside it, despite models of the formation of planetary systems suggesting that orbital migration of giant planets ejects a large fraction of the original planetesimals into interstellar space. The high predicted number density of icy interstellar objects (2.4 × 10-4 per cubic astronomical unit) suggests that some should have been detected, yet hitherto none has been seen. Many decades of asteroid and comet characterization have yielded formation models that explain the mass distribution, chemical abundances and planetary configuration of the Solar System today, but there has been no way of telling whether the Solar System is typical of planetary systems. Here we report observations and analysis of the object 1I/2017 U1 ('Oumuamua) that demonstrate its extrasolar trajectory, and that thus enable comparisons to be made between material from another planetary system and ...

Distant Comets in the Early Solar System

2000

The main goal of this project is to physically characterize the small outer solar system bodies. An understanding of the dynamics and physical properties of the outer solar system small bodies is currently one of planetary science's highest priorities. The measurement of the size distributions of these bodies will help constrain the early mass of the outer solar system as well as lead to an understanding of the collisional and accretional processes. A study of the physical properties of the small outer solar system bodies in comparison with comets in the inner solar system and in the Kuiper Belt will give us information about the nebular volatile distribution and small body surface processing. We will increase the database of comet nucleus sizes making it statistically meaningful (for both Short-Period and Centaur comets) to compare with those of the Trans-Neptunian Objects. In addition, we are proposing to do active ground-based observations in preparation for several upcoming ...

High-Drag Interstellar Objects And Galactic Dynamical Streams

Astrophysical Journal Letters, 2019

The nature of 1I/'Oumuamua (henceforth, 1I), the first interstellar object known to pass through the solar system, remains mysterious. Feng & Jones noted that the incoming 1I velocity vector "at infinity" (v ∞) is close to the motion of the Pleiades dynamical stream (or Local Association), and suggested that 1I is a young object ejected from a star in that stream. Micheli et al. subsequently detected non-gravitational acceleration in the 1I trajectory; this acceleration would not be unusual in an active comet, but 1I observations failed to reveal any signs of activity. Bialy & Loeb hypothesized that the anomalous 1I acceleration was instead due to radiation pressure, which would require an extremely low mass-to-area ratio (or area density). Here I show that a low area density can also explain the very close kinematic association of 1I and the Pleiades stream, as it renders 1I subject to drag capture by interstellar gas clouds. This supports the radiation pressure hypothesis and suggests that there is a significant population of low area density ISOs in the Galaxy, leading, through gas drag, to enhanced ISO concentrations in the galactic dynamical streams. Any interstellar object entrained in a dynamical stream will have a predictable incoming v ∞ ; targeted deep surveys using this information should be able to find dynamical stream objects months to as much as a year before their perihelion, providing the lead time needed for fast-response missions for the future in situ exploration of such objects.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.