Hybrid ToF and RSSI Real-Time Semantic Tracking with an Adaptive Industrial Internet of Things Architecture (original) (raw)

Real-time asset tracking in indoor mass production manufacturing environments can reduce losses associated with pausing a production line to locate an asset. Complemented by monitored contextual information, e.g. machine power usage, it can provide smart information, such as which components have been machined by a worn or damaged tool. Although sensor based Internet of Things (IoT) positioning has been developed, there are still key challenges when benchmarked approaches concentrate on precision, using computationally expensive filtering and iterative statistical or heuristic algorithms, as a trade-off for timeliness and scalability. Precise but high-cost hardware systems and invasive infrastructures of wired devices also pose implementation issues in the Industrial IoT (IIoT). Wireless, self-powered sensors are integrated in this paper, using a novel, communication-economical RSSI/ToF ranging method in a proposed semantic IIoT architecture. Annotated data collection ensures accessibility, scalable knowledge discovery and flexibility to changes in consumer and business requirements. Deployed at a working indoor industrial facility the system demonstrated comparable RMS ranging accuracy (ToF 6m and RSSI 5.1m with 40m range) to existing systems tested in non-industrial environments and a 12.6-13.8m mean positioning accuracy.

A Survey on Internet of Things From Industrial Market Perspective

The Internet of Things (IoT) is a dynamic global information network consisting of Internet-connected objects, such as radio frequency identifications, sensors, and actuators, as well as other instruments and smart appliances that are becoming an integral component of the Internet. Over the last few years, we have seen a plethora of IoT solutions making their way into the industry marketplace. Context-aware communications and computing have played a critical role throughout the last few years of ubiquitous computing and are expected to play a significant role in the IoT paradigm as well. In this paper, we examine a variety of popular and innovative IoT solutions in terms of context-aware technology perspectives. More importantly, we evaluate these IoT solutions using a framework that we built around well-known context-aware computing theories. This survey is intended to serve as a guideline and a conceptual framework for context-aware product development and research in the IoT paradigm. It also provides a systematic exploration of existing IoT products in the marketplace and highlights a number of potentially significant research directions and trends.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.