Tri-state (or more...) Quantum Information Model (original) (raw)
Related papers
Tri-State: From Shannon to Galois Fields in Communication Systems
Communication, compression of information, transmission of information through noisy channels, interconnecting different information systems, cryptography, gate construction –– these areas all depend on classical information theory. We show that, in classical terms, semantic aspects of communication are not at all irrelevant to the engineering problem, contrary to Shannon, and affect the message intended to be transmitted. This is revisited and captured by an analogy to trust, in that they are essential to the channel (for proper use), but cannot be transferred (under risk of flaws) through that same channel. Information is also described by, at least, a tri-state system — not by binary logic. The trust analogy semantics can be coded as the Curry-Howard relationship, connecting computer code with structural logic, by way of different categories. Two-state and Boolean logic (aka Shannon semantics) was used classically before, with Shannon theory, but without trust analogy semantics –...
An Over View of Quantum Information Systems
An Over View of Quantum Information Systems, 2017
In this Book is an overview of Quantum Information Systems is given. Therefore, the postulates of quantum mechanics are given based on one interpretation that is called the Copenhagen interpretation. The main pillars of quantum mechanics are: Superposition, Interference, and Entanglement. Quantum Information Systems comprise three disciplines: Quantum Computation, Quantum Communication, and Quantum Control. Each one of them has a number of topics with some implementations that have reached the commercial level. Quantum Computation has three models: the circuit model that is using different techniques like superconducting elements and special Silicon-based elements. The Adiabatic quantum model has reached the commercial stage through a start-up company using superconducting chips. The categorical quantum model is based on category theory and one of its main applications is the study and verification of network and cryptographic protocols. Quantum communication started with defining the basic unit of information, the qubit. Then the quantum compression theorem was proved. The quantum channel capacity problem was divided into two problems: transmitting classical information over a quantum channel, and transmitting quantum information over a quantum channel. The first problem was partially resolved. However, the second problem is being researched upon. Two applications will be briefly presented: quantum teleportation and superdense coding. Both of them employs quantum entanglement. Quantum Key Distribution (QKD) using cryptographic protocols has received much attention due its importance in network security. A number of protocols have been proposed and some of them have been implemented, and now a number of commercial products have been announced. Also, some experimental networks have been implemented. QKD using space links have been proposed and experimented with. In few years quantum satellites will be launched. Quantum cryptographic protocols are being proposed to protect infrastructure networks like the electric power grid. Also, it is being used as a countermeasure against global spying networks like ECHELON that are detrimental for national economies. The Quantum Internet is also being considered using quantum teleportation together with Cavity Quantum Electrodynamics with some experimental work going on. Quantum Control is essential for both Quantum Computation and Quantum Communication. Intensive research is going on in: State estimation (called Quantum State Tomography), system identification (called Quantum Process Tomography), and Quantum Feedback Control. The basic concepts will be briefly considered in this presentation. University education has witnessed major changes to support the above developments. At the postgraduate level many universities offer many courses related to the above disciplines. Recently, a number of institutions started to offer undergraduate courses and some of them have even started to introduce Quantum Engineering 4 years undergraduate programs. A brief account will be given to such developments.
Superposition and Entanglement: Pillars of Quantum Information Processing
Eprint Arxiv Quant Ph 0511158, 2005
This paper discusses the important primitives of superposition and entanglement in QIP from physics of spin-1/2 particles. System of spin-1/2 particles present a logical and conceptual candidate to understand Quantum Computing. A pedagogical approach to abstract quantum information processing is considered in more concrete physical terms here.
Quantum Subsystems Connections
Neural Network World, 2013
Paper presents the results in quantum informatics where two or more quantum subsystems are connected. For modelling the links amongst quantum subsystems the quantum quasi-spin is the most important parameter. We derive a quantum quasi-spin from the condition of logical requirement for the unambiguousness of wave probabilistic function assigned into quantum subsystem. With respect to these results we can define information bosons with integer quasi-spin, information fermions with half-integer quasi-spin and information quarks with third-integer quasi-spin. The methodology can be extended to other variants of quasi-spin.
Correlated Information: A Logic for Multi-Partite Quantum Systems
Electronic Notes in Theoretical Computer Science, 2011
In this paper we analyze classical and quantum correlations using the tools of epistemic logic. Our main contribution consists of two new logical systems. The first one is called General Epistemic Logic (GEL), it extends traditional epistemic logic with operators that allow us to reason about the information carried by a complex system composed of several parts. The second system is called the Logic of Correlated Knowledge (LCK), which extends GEL with sentences that describe the observational capabilities of an agent. On the semantic side we introduce correlation models, as a generalization of the "interpreted systems" semantics. We use this setting to investigate several types of informational correlations (e.g. distributed information, quantum correlated information) that complex systems can exhibit. We also provide an informational-logical characterization of the notion of "quantum entanglement".
The Third Life of Quantum Logic: Quantum Logic Inspired by Quantum Computing
Journal of Philosophical Logic
We begin by discussing the history of quantum logic, dividing it into three eras or lives. The first life has to do with Birkhoff and von Neumann's algebraic approach in the 1930's. The second life has to do with attempt to understand quantum logic as logic that began in the late 1950's and blossomed in the 1970's. And the third life has to do with recent developments in quantum logic coming from its connections to quantum computation. We discuss our own work connecting quantum logic to quantum computation (viewing quantum logic as the logic of quantum registers storing qubits), and make some speculations about mathematics based on quantum principles.
Quantum information and computation
Nature, 2000
This Chapter deals with theoretical developments in the subject of quantum information and quantum computation, and includes an overview of classical information and some relevant quantum mechanics. The discussion covers topics in quantum communication, quantum cryptography, and quantum computation, and concludes by considering whether a perspective in terms of quantum information sheds new light on the conceptual problems of quantum mechanics.
Information and the Quantum World
Entropy, 2016
The concept of information is not different in quantum theory from its counterpart in classical physics: a sui generis quantum information concept is not needed. However, the quantum world is radically different from its classical counterpart. This difference in structure of the material world has important consequences for the amounts of information that can be stored in physical systems and for the possibilities of information transfer. In many cases, overlap between quantum states (non-orthogonality of states) blurs distinctions and impedes efficient information transfer. However, the other typical quantum feature, entanglement, makes new and seemingly mysterious ways of transporting information possible. In this article, we suggest an interpretational scheme of quantum mechanics in terms of perspectival physical properties that may provide an intelligible account of these novel quantum possibilities, while staying close to the mathematical formalism of quantum mechanics.