Co-DOPED ZnO NANOWIRES GROWN BY VAPOR-LIQUID-SOLID METHOD: STRUCTURAL, OPTICAL AND MAGNETIC STUDIES (original) (raw)

Abstract

We report on the growth of Co-doped ZnO nanowires (NWs) on Si substrate using a self-catalytic vapor deposition method from a Co-doped ZnO nanopowder source and study its structural, optical and magnetic properties for the as-grown and rapid thermal annealed samples. Co (5%)-doped ZnO (ZnCoO) nanoparticles (NPs) are used as source material for the growth process. Electron microscopy imaging clearly reveals the formation of long ZnO NWs with uniform diameter. X-ray di®raction analysis con¯rms the single crystalline hexagonal structure of Co-doped ZnO NWs without impurities of metallic cobalt or other phases. Micro-Raman studies of doped samples show doping/disorder induced additional modes as compared to the undoped ZnO. Room temperature photoluminescence spectra of the doped ZnO NWs show strong emission band at 380nmandnosigni¯cantemissionwasobservedinthevisibleregionindicatinglowdefectcontentintheNWs.Theˉelddependentmagnetization(MAˋHcurve)measuredatroomtemperatureexhibitsparamagneticnaturefortheNWswiththemagneticmomentintherange2Aˋ3.7milli−emu/cm2fortheappliedeldof2Tesla,whilethesourceZnCoONPsexhibitroomtemperatureferromagnetismwithsaturationmagnetization380 nm and no signi¯cant emission was observed in the visible region indicating low defect content in the NWs. Thē eld dependent magnetization (MÀH curve) measured at room temperature exhibits paramagnetic nature for the NWs with the magnetic moment in the range 2À3.7 milli-emu/cm 2 for the applied eld of 2 Tesla, while the source ZnCoO NPs exhibit room temperature ferromagnetism with saturation magnetization 380nmandnosigni¯cantemissionwasobservedinthevisibleregionindicatinglowdefectcontentintheNWs.Theˉelddependentmagnetization(MAˋHcurve)measuredatroomtemperatureexhibitsparamagneticnaturefortheNWswiththemagneticmomentintherange2Aˋ3.7milliemu/cm2fortheappliedeldof2Tesla,whilethesourceZnCoONPsexhibitroomtemperatureferromagnetismwithsaturationmagnetization6 emu/g. Possible mechanism of alteration in magnetic behavior in doped NWs are discussed based on the growth conditions and role of defects.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (44)

  1. S. J. Pearton, C. R. Abernathy, D. P. Norton, A. F. Hebard, Y. D. Park, L. A. Boatner and J. D. Budai, Mater. Sci. Eng. R 40, 137 (2003).
  2. W. Prellier, A. Fouchet and B. Mercey, J. Phys.: Condens. Matter 15, R1583 (2003).
  3. I. Djerdj, Z. Jaglicic, D. Arcon and M. Niiederberger, Nanoscale 2, 1096 (2010).
  4. T. Diet, H. Ohno, F. Matsukura, J. Cibert and D. Ferrand, Science 287, 1019 (2000).
  5. Z. K. Tang, G. K. L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma and Y. Segawa, Appl. Phys. Lett. 72, 3270 (1998).
  6. D. Phan and G. Chung, Curr. Appl. Phys. 12, 521 (2012).
  7. D. Phan and G. Chung, Curr. Appl. Phys. 12, 210 (2012).
  8. S. J. Pearton, D. P. Norton, Y. W. Heo, L. C. Tien, M. P. Ivill, Y. Li, B. S. Kang, F. Ren, J. Kelly and A. F. Hebard, J. Electron. Mater. 35, 5 (2006).
  9. G. Lawes, A. S. Risbud, A. P. Ramirez and R. Seshadri, Phys. Rev. B 71, 045201 (2005).
  10. C. C. Wang, M. Liu, B. Y. Mana, C. S. Chen, S. Z. Jiang, S. Y. Yang, X. G. Gao, S. C. Xu, B. Hu, Z. C. Sun, J. J. Guo and J. Hou, AIP Adv. 2, 012182 (2012).
  11. Y. Hao, S. Lou, S. Zhou, R. Yuan, G. Yu and N. Li, Nano Res. Lett. 7, 100 (2012).
  12. J. M. Coey, J. Appl. Phys. 97, 10D313 (2005).
  13. W. B. Jian, L. Q. Liu, B. Xiang, X. Z. Zhang, Y. Zhang and D. P. Yu, Appl. Phys. Lett. 88, 063104 (2006).
  14. H. Li, Y. Huang, Q. Zhang, Y. Qiao, Y. Gu, J. Liu and Y. Zhang, Nanoscale 3, 654 (2011).
  15. Y. He, P. Sharma, K. Biswas, E. Z. Liu, N. Ohtsu, A. Inoue, Y. Inada, M. Nomura, J. S. Tsc, S. Yin and J. Z. Jiang, Phys. Rev. B 78, 155202 (2008).
  16. M. S. Park and B. I. Min, Phys. Rev. B 68, 224436 (2003).
  17. J. B. Cui and U. J. Gibson, Appl. Phys. Lett. 87, 133108 (2005).
  18. J. Cui, Q. Zeng and U. Gibson, J. Appl. Phys. 99, 08M113 (2006).
  19. C.-Y. Wong, L.-M. Lai, S.-L. Leung, V. A. L. Roy and E. Y.-B. Pun, Appl. Phys. Lett. 93, 023502 (2008).
  20. Y. Q. Chang, D. B. Wang, X. H. Luo, X. Y. Yu, X. H. Chen, L. Li, C. P. Chen, R. M. Wang, J. Xu and D. P. Yu, Appl. Phys. Lett. 83, 4020 (2003).
  21. J.-J. Wu, S.-C. Liu and M.-H. Wang, Appl. Phys. Lett. 85, 1027 (2004).
  22. B. Pal and P. K. Giri, J. Appl. Phys. 108, 084322 (2010)
  23. J. Jie, G. Wang, X. Han, Q. Yu, Y. Liao, G. Li and J. G. Hou, Chem. Phys. Lett. 387, 466 (2004).
  24. J. B. Wang, G. J. Huang, X. L. Zhong, L. Z. Sun, Y. C. Zhou and E. H. Liu, Appl. Phys. Lett. 88, 252502 (2006).
  25. D. G. Mead and G. R. Wilkinson, J. Raman Spec- trosc. 6, 123 (1997).
  26. J. Alaria, H. Bieber, S. Colis, G. Schmerber and A. Dinia, Appl. Phys. Lett. 88, 112503 (2006).
  27. B. C. Cheng, Y. H. Xiao, G. S. Wu and L. D. Zhang, Appl. Phys. Lett. 84, 416 (2004).
  28. L. B. Duan, G. H. Rao, Y. C. Wang, J. Yu and T. Wang, J. Appl. Phys. 104, 013909 (2008).
  29. C. Wang, Z. Chen, H. Hu and D. Zhang, Physica B 404, 4075 (2009).
  30. B. Cheng, W. Sun, J. Jiao, B. Tian, Y. Xiao and S. Lei, J. Raman Spectrosc. (2010) doi: 10.1002/ jrs.2590.
  31. C. Li, G. Fang, Q. Fu, F. Su, G. Li, X. Wu and X. J. Zhao, J. Cryst. Growth 292, 19 (2006).
  32. M. Gao, R. Cheng, W. Li, Y. Li, X. Zhang and S. Xie, J. Phys. Chem. C 114, 11081 (2010).
  33. H. T. Ng, B. Chen, J. Li, J. Han, M. Meyyappan, J. Wu, S. X. Li and E. E. Haller, Appl. Phys. Lett. 82, 2023 (2003).
  34. C. W. Cheng, G. Y. Xu, H. Q. Zhang and Y. Luo, Mater. Lett. 62, 1617 (2008).
  35. X. Liu, X. Wu, H. Cao and R. P. H. Chang, J. Appl. Phys. 95, 3141 (2004).
  36. B. Pal and P. K. Giri, J. Nanosci. Nanotechnol. (2011) doi:10.1166/JNN.2011.4293.
  37. R. Podila, W. Queen, A. Nath, J. T. Arantes, A. L. Schoenhalz, A. Fazzio, G. M. Dalpian, J. He, S. J. Hwu, M. J. Skove and A. M. Rao, Nano Lett. 10, 1383 (2010).
  38. E. A. Choi, W.-J. Lee and K. J. Chang, J. Appl. Phys. 108, 023904 (2010).
  39. C. C. Wang, B. Y. Man, M. Liu, C. S. Chen, S. Z. Jiang, S. Y. Yang, S. C. Xu, X. G. Gao and B. Hu, Adv. Condens. Mater. Phys. 2012, 363981 (2011).
  40. Q. Xu, S. Zhou, D. Marko, K. Potzger, J. Fas- sbender, M. Vinnichenko, M. Helm, H. Hochmuth, M. Lorenz, M. Grundmann and H. Schmidt, J. Phys. D 42, 085001 (2009).
  41. B. Santara, B. Pal and P. K. Giri, J. Appl. Phys. 110, 114322 (2011).
  42. L. Zhu, Z. Ye, X. Wang, Z. Ye and B. Zhao, Thin Solid Films 518, 1879 (2010).
  43. E. Goering, S. Bruck, T. Tietze, G. Jakob, M. Gacic and H. Adrian, J. Phys. Conf. Ser. 200, 092007 (2010).
  44. A. Ney, M. Opel, T. C. Kaspar, V. Ney, S. Ye, K. Ollefs, T. Kammermeier, S. Bauer, K.-W. Niel- sen, S. T. B. Goennenwein, M. H. Engelhard, S. Zhou, K. Potzger, J. Simon, W. Mader, S. M. Heald, J. C. Cezar, F. Wilhelm, A. Rogalev, R. Gross and S. A. Chambers, New J. Phys. 12, 013020 (2010). 1250028-8 September 24, 2012 6:11:43pm WSPC/213-NANO 1250028 ISSN: 1793-2920