“A VISION FOR THE DECADE (2014-2024); SUSTAINABLE ENERGY FOR ALL” (original) (raw)

Energy in the Context of Sustainability

Daedalus, 2013

Today and in the coming decades, the world faces the challenge of meeting the needs of a still-growing human population, and of doing it sustainably – that is, without affecting the ability of future generations to meet their needs. Energy plays a pivotal role in this challenge, both because of its importance to economic development and because of the myriad interactions and influences it has on other critical sustainability issues. In this essay, we explore some of the direct interactions between energy and other things people need, such as food, water, fuel, and clean air, and also some of its indirect interactions with climate, ecosystems, and the habitability of the planet. We discuss some of the challenges and potential unintended consequences that are associated with a transition to clean, affordable energy as well as opportunities that make sense for energy and other sustainability goals. Pursuing such opportunities is critical not just to meeting the energy needs of nine bil...

Energy and Environment Perspectives

The inevitable increase in population and the economic development that must necessarily occur in many countries have serious implications for the environment, because energy generation processes (e.g., generation of electricity, heating, cooling, or motive force for transportation vehicles and other uses) are polluting and harmful to the ecosystem.

THE FUTURE OF ENERGY REQUIRED FOR THE WORLD

This article aims to present what the future would require for the production and consumption of energy in the world based on the use of clean and renewable energy. To avoid the catastrophic future that is predicted for humanity resulting from global warming, it is imperative, among other measures, to reduce global greenhouse gas emissions by replacing the current global energy matrix based fundamentally on fossil fuels (coal , oil and natural gas) and in nuclear energy, by another global energy matrix structured based on renewable energy resources (hydroelectricity, biomass, solar energy, wind energy and hydrogen) to avoid or minimize global warming and, consequently, the occurrence of catastrophic changes in the Earth's climate. Regardless of the various solutions that may be adopted to eliminate or mitigate the causes of the greenhouse effect, the most important action is, without a doubt, the adoption of measures that contribute to the elimination or reduction of the consumption of fossil fuels in energy production, as well as such as the more efficient use of energy in transport, industry, agriculture and cities (residences and commerce), given that the use and production of energy are responsible for 57% of greenhouse gases emitted by human activity. In this sense, the implementation of a sustainable energy system is essential. A sustainable energy system will only be possible if, in addition to abandoning fossil fuels, energy efficiency is also greatly improved.

Energy in the Age of Sustainability

Meeting global energy needs in a sustainable and environmentally responsible way is one of the grand challenges of our time. While the use of energy based on fossil fuels has enabled great advances and an increase in the standard of living, it has also brought us to the brink of an environmental catastrophe. As a society, we will need to develop strategies that integrate renewable and sustainable energy sources. We must also engage and partner with policy makers in order to articulate an energy policy that is not only scientifically and technically sound, but also one that the global society will accept. The energy challenge is the type of problem that we, as a global society, have never faced before and we need decisive scientific and political leadership to address it. We must accept the challenge and insist that our leaders articulate a global energy policy capable of meeting such a challenge. (Image created by Alice Muhlback and used with permission.) E nergy: its mere sound evokes a broad range of reactions depending on our experience, education, political affiliation , and many other factors. The word is part of our everyday lexicon in terms of the cost of energy (when we actually mean the cost of fuel), global availability of energy and the inevitable geo-political analysis, the environmental consequences of energy use, carbon footprint, global warming, emerging economies, population growth...you get the idea. Energy is part of virtually every aspect of our lives, local and global. Energy is also a subject of big numbers such as "quads" (quadrillion BTUs), Terawatt-years, and gigatons (usually of generated CO 2). As chemists, actually as citizens (better yet, as informed citizens), we need to grapple with these concepts and the magnitude of these numbers to get a realistic assessment of what they mean and how our collective behavior affects them and the future of our planet. (See Figure 1.) Energy availability, in a reliable and inexpensive way, has been key to technological advances and innovation, which, in turn, have enhanced our standard of living. One can readily identify and acknowledge that developments such as the steam engine, the incandescent lamp, the internal combustion engine and the computer, just to name a few, have transformed the way we live and interact with each other. All of them have a common thread of depending on an energy source, albeit different in each case, to accomplish a particular function. This brings us to the description of energy in terms closer to those associated with thermodynamics, mainly as the ability to do work. So the question is, how are all of these issues interrelated, and what role do we, collectively, play?

Developing Sustainability

Advances in Chemical and Materials Engineering

The main types of renewable energies are reviewed in relation with currently available technologies, planet's emergencies and strategies towards sustainable development. The discussed issues are: the limited space for living, the biospheric degradation upon fossil fuels burning, the change of paradigm of human happiness from consumption to cultural development, a continuous improving of conversion of the low density and intermittent sun light on final energy on an industrial scale, the need to reintroduce the concepts of "enough" and "equity" while developing the know-how patrimony and good practices for the next generations.