Tactile Masking by Electrovibration (original) (raw)
Related papers
Effect of Remote Masking on Tactile Perception of Electrovibration
IEEE Transactions on Haptics, 2021
Masking has been used to study human perception of tactile stimuli, including those created by electrovibration on touch screens. Earlier studies have investigated the effect of on-site masking on tactile perception of electrovibration. In this article, we investigated whether it is possible to change the absolute detection threshold and intensity difference threshold of electrovibration at the fingertip of index finger via remote masking, i.e., by applying a (mechanical) vibrotactile stimulus on the proximal phalanx of the same finger. The masking stimuli were generated by a voice coil (the Haptuator). For 16 participants, we first measured the detection thresholds for electrovibration at the fingertip and for vibrotactile stimuli at the proximal phalanx. Then, the vibrations on the skin were measured at four different locations on the index finger of subjects to investigate how the mechanical masking stimulus propagated as the masking level was varied. Later, masked absolute thresholds of eight participants were measured. Finally, for another group of eight participants, intensity difference thresholds were measured in the presence/absence of vibrotactile masking stimuli. Our results show that vibrotactile masking stimuli generated sub-threshold vibrations around the fingertip, and hence, probably did not mechanically interfere with the electrovibration stimulus. However, there was a clear psychophysical masking effect due to central neural processes. We measured the effect of masking stimuli, up to 40 dB SL, on the difference threshold at four different intensity standards of electrovibration. We proposed two models based on hypothetical neural signals for prediction of the masking effect on intensity difference thresholds for electrovibration: amplitude and energy models. The energy model was able to predict the effect of masking more accurately, especially at high intensity masking levels.
Effect of Waveform on Tactile Perception by Electrovibration Displayed on Touch Screens
IEEE Transactions on Haptics, 2017
In this study, we investigated the effect of input voltage waveform on our haptic perception of electrovibration on touch screens. Through psychophysical experiments performed with eight subjects, we first measured the detection thresholds of electrovibration stimuli generated by sinusoidal and square voltages at various fundamental frequencies. We observed that the subjects were more sensitive to stimuli generated by square wave voltage than sinusoidal one for frequencies lower than 60 Hz. Using Matlab simulations, we showed that the sensation difference of waveforms in low fundamental frequencies occurred due to the frequency-dependent electrical properties of human skin and human tactile sensitivity. To validate our simulations, we conducted a second experiment with another group of eight subjects. We first actuated the touch screen at the threshold voltages estimated in the first experiment and then measured the contact force and acceleration acting on the index fingers of the subjects moving on the screen with a constant speed. We analyzed the collected data in the frequency domain using the human vibrotactile sensitivity curve. The results suggested that Pacinian channel was the primary psychophysical channel in the detection of the electrovibration stimuli caused by all the square-wave inputs tested in this study. We also observed that the measured force and acceleration data were affected by finger speed in a complex manner suggesting that it may also affect our haptic perception accordingly.
Effect of Waveform in Haptic Perception of Electrovibration on Touchscreens
The perceived intensity of electrovibration can be altered by modulating the amplitude, frequency, and waveform of the input voltage signal applied to the conductive layer of a touchscreen. Even though the effect of the first two has been already investigated for sinusoidal signals, we are not aware of any detailed study investigating the effect of the waveform on our haptic perception in the domain of electrovibration. This paper investigates how input voltage waveform affects our haptic perception of electrovibration on touchscreens. We conducted absolute detection experiments using square wave and sinusoidal input signals at seven fundamental frequencies (15, 30, 60, 120, 240, 480 and 1920 Hz). Experimental results depicted the well-known U-shaped tactile sensitivity across frequencies. However, the sensory thresholds were lower for the square wave than the sinusoidal wave at fundamental frequencies less than 60 Hz while they were similar at higher frequencies. Using an equivalent circuit model of a finger-touchscreen system, we show that the sensation difference between the waveforms at low fundamental frequencies can be explained by frequency-dependent electrical properties of human skin and the differential sensitivity of mechanoreceptor channels to individual frequency components in the electrostatic force. As a matter of fact, when the electrostatic force waveforms are analyzed in the frequency domain based on human vibrotactile sensitivity data from the literature [15], the electrovibration stimuli caused by square-wave input signals at all the tested frequencies in this study are found to be detected by the Pacinian psychophysical channel.
Effect of Remote Masking on Detection of Electrovibration
IEEE World Haptics Conference, 2019
Masking has been used to study human perception of tactile stimuli, including those created on haptic touch screens. Earlier studies have investigated the effect of in-site masking on tactile perception of electrovibration. In this study, we investigated whether it is possible to change the detection threshold of electrovibration at fingertip of index finger via remote masking, i.e. by applying a (mechanical) vibrotactile stimulus on the proximal phalanx of the same finger. The masking stimuli were generated by a voice coil (Haptuator). For eight participants, we first measured the detection thresholds for electrovibration at the fingertip and for vibrotactile stimuli at the proximal phalanx. Then, the vibrations on the skin were measured at four different locations on the index finger of subjects to investigate how the mechanical masking stimulus propagated as the masking level was varied. Finally, electrovibration thresholds were measured in the presence of vibrotactile masking stimuli. Our results show that vibrotactile masking stimuli generated sub-threshold vibrations around fingertip and, hence, probably did not mechanically interfere with the electrovibration stimulus. However, there was a clear psychophysical masking effect due to central neural processes. Electrovibration absolute threshold increased approximately 0.19 dB for each dB increase in the masking level.
Finger motion and contact by a second finger influence the tactile perception of electrovibration
Journal of the Royal Society Interface, 2021
Electrovibration holds great potential for creating vivid and realistic haptic sensations on touchscreens. Ideally, a designer should be able to control what users feel independent of the number of fingers they use, the movements they make, and how hard they press. We sought to understand the perception and physics of such interactions by determining the smallest 125 Hz electrovibration voltage that 15 participants could reliably feel when performing four different touch interactions at two normal forces. The results proved for the first time that both finger motion and contact by a second finger significantly affect what the user feels. At a given voltage, a single moving finger experiences much larger fluctuating electrovibration forces than a single stationary finger, making electrovibration much easier to feel during interactions involving finger movement. Indeed, only about 30% of participants could detect the stimulus without motion. Part of this difference comes from the fact...
Rendering Strategy to Counter Mutual Masking Effect in Multiple Tactile Feedback
Applied Sciences
Recently, methods and devices that simultaneously utilize two or more tactile feedback types have been proposed for more immersive interaction with virtual objects. However, the masking effect, which makes us less sensitive to various stimuli presented at the same time, has scarcely been explored. In this study, we propose a novel tactile rendering algorithm that can eliminate the mutual masking effect at the user’s sensation level, when mechanical vibration and electrovibration are applied simultaneously. First, the masking functions of the two stimuli were investigated for various stimulus combinations. Based on these, a generalized form of the masking function was derived. We then tested and confirmed that the proposed algorithm, which calculates the required stimulus intensity to compensate for the mutual masking effect, could render the arbitrary stimulus intensity desired to be perceived by the users. The results of the user test revealed that the proposed rendering algorithm ...
Roughness perception of virtual textures displayed by electrovibration on touch screens
In Proceedings of the IEEE World Haptics Conference, 2017
In this study, we have investigated the human roughness perception of periodical textures on an electrostatic display by conducting psychophysical experiments with 10 subjects. To generate virtual textures, we used low-frequency unipolar pulse waves in different waveform (sinusoidal, square, saw-tooth, triangle), and spacing. We modulated these waves with a 3kHz high frequency sinusoidal carrier signal to minimize perceptional differences due to the electrical filtering of human finger and eliminate low-frequency distortions. The subjects were asked to rate 40 different macro textures on a Likert scale of 1-7. We also collected the normal and tangential forces acting on the fingers of subjects during the experiment. The results of our user study showed that subjects perceived the square wave as the roughest while they perceived the other waveforms equally rough. The perceived roughness followed an inverted U-shaped curve as a function of groove width, but the peak point shifted to t...