Synthesis and structural characteristics of nitrogen doped TiO 2 aerogels (original) (raw)

Abstract

Nitrogen doped TiO 2 aerogels were obtained by sol-gel process followed by supercritical drying with liquid CO 2 . Urea and NH 3 (25% aqueous solution) were used as nitrogen sources. The as-prepared aerogels were submitted to thermal treatments performed under different experimental conditions (temperature and heating time). Increasing the temperature from 450°C to 550°C a decrease about 32% and 15.4% of the particle size and surface OH groups' concentration, respectively and an increase about 21.4% of the incorporated nitrogen in TiO 2 lattice were observed. The immersion of the TiO 2 aerogels in NH 3 solution induced a decreasing by 48.86% and by 80% of the S BET and the aerogel porosity, respectively. The photocatalytic activity of the obtained N-doped TiO 2 was found to depend mainly on the nitrogen incorporation in the TiO 2 lattice.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (48)

  1. U. Bach, D. Lupo, P. Comte, J.E. Mose, F. Weisso, J. Salbeck, H. Spreitzer, M. Gratzel, Nature 395 (1998) 583-584.
  2. R. O'Hayre, M. Nanu, J. Schoonman, A. Goossens, Q. Wang, M. Gratzel, Adv. Funct. Mater. 16 (2006) 1566-1576.
  3. I. Minsoli, N. Phillohidis, I. Poulios, S. Sotiropoulos, J. Appl. Electrochem. 36 (2006) 463-474.
  4. Y. Wang, H. Cheng, Y. Hao, J. Ma, W. Li, S. Cal, J. Mater. Sci. 34 (1999) 3721- 3729.
  5. M. Ischia, R. Campostrini, L. Lutteroti, J. Sol-Gel Sci. Technol. 33 (2005) 201- 213.
  6. A. Di Paola, E. Garcia-Lopez, S. Ikeda, G. Marci, B. Ohtani, L. Palmisano, Catal. Today 75 (2002) 87-93.
  7. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 293 (5528) (2001) 269-271.
  8. R. Asahi, T. Morikawa, Chem. Phys. 339 (2007) 57-63.
  9. Q.I. Wang, X.J. Yu, D.Z. Sun, J. Hazard. Mater. 144 (2007) 328-333.
  10. S. Sato, R. Nakamura, S. Abe, Appl. Catal. A 284 (2005) 131-136.
  11. J.S. Jang, H.G. Kim, M.S. Ji, W.S. Bae, H.J. Jung, H.B. Shon, S.J. Lee, J. Solid State Chem. 179 (2006) 1067-1075.
  12. C. Di Valentin, E. Finazzi, G. Pacchioni, A. Selloni, S. Livraghi, M.C. Paganini, E. Giamello, Chem. Phys. (2007) 44-56.
  13. T. Ihara, M. Miyoshi, Y. Iriyama, O. Matsumoto, S. Sugihara, Appl. Catal. B: Environ. 42 (2003) 403-409.
  14. H. Irie, Y. Watanabe, K. Hashimoto, J. Phys. Chem. B 107 (2003) 5483-5486.
  15. R. Nakamura, T. Tanaka, Y. Nakato, J. Phys. Chem. B 108 (2004) 10617-10620.
  16. S. Sakthivel, H. Kisch, Chem. Phys. Chem. 4 (2003) 487-490.
  17. S. Livraghi, M.R. Chierotti, E. Giamello, G. Magnacca, M.C. Paganini, G. Cappelletti, C.L. Bianchi, J. Phys. Chem. C 112 (2008) 17244-17252.
  18. I.U. Arachige, S.L. Brock, J. Am. Chem. Soc. 128 (2006) 7964-7971.
  19. T. Horikawa, M. Katoh, T. Tomida, Micropor. Mesopor. Mater. 110 (2008) 397- 404.
  20. E. Indrea, A. Barbu, Appl. Surf. Sci. 106 (1996) 498-501.
  21. I. Djerdi, A.M. Tonejc, J. Alloys Compd. 413 (2006) 159-174.
  22. N. Aldea, E. Indrea, Comput. Phys. Commun. 60 (1990) 155-159.
  23. W. Kraus, G. Nolze, J. Appl. Crystallogr. 29 (1996) 301-303.
  24. J. Xu, L. Li, Y. Yan, H. Wang, X. Wang, X. Fu, G. Li, J. Colloid Interface Sci. 318 (2008) 29-34.
  25. J.A. Rob van Veen, F.T.G. Valtmaat, G. Jonkers, J. Chem. Soc., Chem. Commun. (1985) 1656-1658.
  26. G. Niac, V. Voiculescu, I. Baldea, M. Preda, Formulae, Tables and Physic- Chemistry exercises, Dacia, Cluj-Napoca, 1984.
  27. X. Qiu, C. Burda, Chem. Phys. 339 (2007) 1-10.
  28. X. Chen, Y. Lou, A.C.S. Samia, C. Burda, J.L. Gole, Adv. Funct. Mater. 15 (2005) 41-49.
  29. D. Li, N. Ohashi, S. Hishita, T. Kolodiazhnyi, H. Haneda, J. Solid State Chem. 178 (2005) 3293-3302.
  30. H. Chen, A. Nambu, W. Wen, J. Graciani, Z. Zhong, J.C. Hanson, E. Fujita, J.A. Rodriguez, J. Phys. Chem. C 111 (2007) 1366-1372.
  31. Y. Xie, Q.N. Zhao, X.J. Zhao, Y.Z. Li, Catal. Lett. 118 (2007) 231-237.
  32. J.H. Xu, W.L. Dai, J.X. Li, Y. Cao, H.X. Li, H. He, K. Fan, Catal. Commun. 9 (2008) 146-152.
  33. S. Badrinarayanan, S. Sinha, A.B. Mandale, J. Electron., Spectrosc. Relat. Phenom. 49 (1989) 303-309.
  34. N.C. Saha, H.G. Tompkins, J. Appl. Phys. 72 (1992) 3072-3079.
  35. M. Sathish, B. Viswanathan, R.P. Viswanath, C.S. Gopinath, Chem. Mater. 17 (2005) 6349-6353.
  36. C.S. Gopinath, J. Phys. Chem. B 110 (2006) 7079-7080.
  37. E. Gyorgy, A.P. del Pino, P. Serra, J.L. Morenza, Surf. Coat. Technol. 173 (2003) 265-270.
  38. C. Di Valentin, G.F. Pacchioni, A. Selloni, S. Livraghi, E. Giamello, J. Phys. Chem. B 109 (2005) 11414-11419.
  39. F. Peng, L.F. Cai, H. Yu, H.J. Wang, J. Yang, J. Solid State Chem. 181 (2008) 130- 136.
  40. C. Di Valentin, G.F. Pacchioni, A. Selloni, Phys. Rev. B 70 (2004) 085116(1-4).
  41. A.V. Emeline, V.N. Kuznetsov, V.K. Rybchuk, N. Serpone, Int. J. Photoenergy, doi:10.1155/2008/258394.
  42. B. Erdem, R.A. Hunsicker, G.W. Simmons, E.D. Sudol, V.L. Dimonie, M.S. El- Aasser, Langmuir 17 (2001) 2664-2669.
  43. L. Lin, R.Y. Zheng, J.L. Xie, Y.X. Zhu, Y.C. Xie, Appl. Catal. B: Environ. 76 (2007) 196-202.
  44. O. Carp, C.L. Huisman, A. Reller, Prog. Solid State Chem. 32 (2004) 33-177.
  45. J. Rouquerol, K. Rouquerol, K. Sing, Adsorption by Powders and Porous solids, Academic Press 1999.
  46. M. Inagaki, Y. Nakazawa, M. Hirano, Y. Kobayashi, M. Toyoda, Int. J. Inorg. Mater. 3 (2001) 809-811.
  47. M. Andersson, L. Osterlund, S. Ljungstron, A. Palmqvist, J. Phys. Chem. 106 (2002) 10674-10675.
  48. H.K. Shon, S. Vigneswaran, J. Kim, H. Ngo, Korean J. Chem. Eng. 24 (2007) 618- 623.