Lateral Migration and Orientation of Elliptical Particles in Poiseuille Flows (original) (raw)

Abstract

The simulations of elliptical particles in a pressure driven flow are performed using a lattice Boltzmann (LB) method. Effects of multi-particle interaction on the lateral migration and orientation of both neutrally and non-neutrally buoyant particles are investigated. Low and itermediate solid concentrations in terms of area fraction f a =13, 25, and 40% are included in these simulations.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (27)

  1. C. K. Aidun and Y. Lu, Lattice Boltzmann simulation of solid suspensions with impermeable boundaries, J. Statist. Phys. 81:49 (1995).
  2. C. K. Aidun, Y. Lu, and E. Ding, Direct analysis of particulate suspensions with inertia using the discrete Boltzmann equation, J. Fluid Mech. 373:287 (1998).
  3. H. Brenner, Hydrodynamic resistance of particles at small Reynolds numbers, Adv. Chem. Eng. 6:287 (1966).
  4. R. G. Cox and S. G. Mason, Suspended particles in fluid flow through tubes, Ann. Res. Fluid Mech. 3:291 (1971).
  5. D. d'Humieres, P. allemand, and U. Frisch, Lattice gas model for 3D hydrodynamics, Europhys. Lett. 2:291 (1986).
  6. J. Feng, H. H. Hu, and D. D. Joseph, Direct simulation of initial value problems for the motion of solid bodies in a Newtonian fluid. Part 1. Sedimentation, J. Fluid Mech. 261:95 (1994a).
  7. J. Feng, H. H. Hu, and D. D. Joseph, Direct simulation of initial value problems for the motion of solid bodies in a Newtonian fluid. Part 2. Couette and flows, J. Fluid Mech. 277:271 (1994b).
  8. F. Feuilleboisi, Some theoretical results for motion of solid spherical particles in a viscous fluid, in Multiphase Science and Technology, G. F. Hewitt et al., eds., Vol. 4 (1989), pp. 583. Hemisphere.
  9. P. Huang, J. Feng, and D. Joseph, The turning couples on an elliptic particle settling in a vertical channel, J. Fluid Mech. 271:1-16 (1994).
  10. P. Y. Huang, H. H. Hu, and D. D. Joseph, Direct simulation of the sedimentation of elliptic particles in Oldroyd-B fluids, J. Fluid Mech. 362:297 (1998).
  11. D. D. Joseph, http://www.aem.umn.edu/people/faculty/joseph (2001).
  12. D. L. Koch and A. J. C. Ladd, Moderate Reynolds number flows through periodic and random arrays of aligned cylinders, J. Fluid Mech. 349:31-66 (1997).
  13. A. J. C. Ladd, Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation, J. Fluid Mech. 271:285 (1994a).
  14. A. J. C. Ladd, Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 2. Numerical results, J. Fluid Mech. 271:311 (1994b).
  15. L. S. Luo, Unified Theory of the lattice Boltzmann models for nonideal gases, Phys. Rev. Lett. 81:1618-1621.
  16. X. He and L. S. Luo, A priori derivation of the lattice Boltzmann equation, Phys. Rev. E 55:R6333-R6336 (1997).
  17. L. G. Leal, Particle motion in a viscous fluid, Ann. Rev. Fluid Mech. 12:435 (1980).
  18. G. McNamara and G. Zanetti, Use of Boltzmann equation to simulate lattice-gas automata, Phys. Rev. Lett. 61:2332 (1988).
  19. D. W. Qi, Non-spheric colloidal suspensions in three-dimensional space, Internat. J. Modern Phys. C 8:4, 985-997 (1997a).
  20. D. W. Qi, Computer simulation of coating suspensions. Proceedings, Tappi Advanced Coating Fundamental Symposium, May (Philadelphia, Pennsylvania, 1997b), pp. 201-211.
  21. D. W. Qi, Lattice Boltzmann Simulations of particles in No-zero-Reynolds-number flows, J. Fluid Mech. 385:41-62 (1999).
  22. D. W. Qi, Lattice Boltzmann simulations of fluidization of rectangular particles, Int. J. Mul- tiphase Fluid 26(4):421-433 (2000).
  23. D. W. Qi, Simulations of fluidization of cylindrical multi-particles in a three-dimensional space, Int. J. Multiphase Fluid 27:107 (2001).
  24. D. W. Rebertus and K. M. Sando, Molecular dynamic simulation of a fluid of hard sphero- cylinders, J. Chem. Phys. 67:2585 (1977).
  25. G. Segre and A. Silberbergi, Radial Poiseuille flows of suspensions, Nature 189:209 (1961).
  26. G. Segre and A. Silberbergi, Behavior of macroscopic rigid spheres in Poiseuille flow. Part 1, J. Fluid Mech. 14:115 (1962).
  27. S. Wolfram, Cellular automaton fluids 1: Basic theory, J. Statist. Phys. 45:471 (1986).