Lateral Migration and Orientation of Elliptical Particles in Poiseuille Flows (original) (raw)
Abstract
The simulations of elliptical particles in a pressure driven flow are performed using a lattice Boltzmann (LB) method. Effects of multi-particle interaction on the lateral migration and orientation of both neutrally and non-neutrally buoyant particles are investigated. Low and itermediate solid concentrations in terms of area fraction f a =13, 25, and 40% are included in these simulations.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (27)
- C. K. Aidun and Y. Lu, Lattice Boltzmann simulation of solid suspensions with impermeable boundaries, J. Statist. Phys. 81:49 (1995).
- C. K. Aidun, Y. Lu, and E. Ding, Direct analysis of particulate suspensions with inertia using the discrete Boltzmann equation, J. Fluid Mech. 373:287 (1998).
- H. Brenner, Hydrodynamic resistance of particles at small Reynolds numbers, Adv. Chem. Eng. 6:287 (1966).
- R. G. Cox and S. G. Mason, Suspended particles in fluid flow through tubes, Ann. Res. Fluid Mech. 3:291 (1971).
- D. d'Humieres, P. allemand, and U. Frisch, Lattice gas model for 3D hydrodynamics, Europhys. Lett. 2:291 (1986).
- J. Feng, H. H. Hu, and D. D. Joseph, Direct simulation of initial value problems for the motion of solid bodies in a Newtonian fluid. Part 1. Sedimentation, J. Fluid Mech. 261:95 (1994a).
- J. Feng, H. H. Hu, and D. D. Joseph, Direct simulation of initial value problems for the motion of solid bodies in a Newtonian fluid. Part 2. Couette and flows, J. Fluid Mech. 277:271 (1994b).
- F. Feuilleboisi, Some theoretical results for motion of solid spherical particles in a viscous fluid, in Multiphase Science and Technology, G. F. Hewitt et al., eds., Vol. 4 (1989), pp. 583. Hemisphere.
- P. Huang, J. Feng, and D. Joseph, The turning couples on an elliptic particle settling in a vertical channel, J. Fluid Mech. 271:1-16 (1994).
- P. Y. Huang, H. H. Hu, and D. D. Joseph, Direct simulation of the sedimentation of elliptic particles in Oldroyd-B fluids, J. Fluid Mech. 362:297 (1998).
- D. D. Joseph, http://www.aem.umn.edu/people/faculty/joseph (2001).
- D. L. Koch and A. J. C. Ladd, Moderate Reynolds number flows through periodic and random arrays of aligned cylinders, J. Fluid Mech. 349:31-66 (1997).
- A. J. C. Ladd, Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation, J. Fluid Mech. 271:285 (1994a).
- A. J. C. Ladd, Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 2. Numerical results, J. Fluid Mech. 271:311 (1994b).
- L. S. Luo, Unified Theory of the lattice Boltzmann models for nonideal gases, Phys. Rev. Lett. 81:1618-1621.
- X. He and L. S. Luo, A priori derivation of the lattice Boltzmann equation, Phys. Rev. E 55:R6333-R6336 (1997).
- L. G. Leal, Particle motion in a viscous fluid, Ann. Rev. Fluid Mech. 12:435 (1980).
- G. McNamara and G. Zanetti, Use of Boltzmann equation to simulate lattice-gas automata, Phys. Rev. Lett. 61:2332 (1988).
- D. W. Qi, Non-spheric colloidal suspensions in three-dimensional space, Internat. J. Modern Phys. C 8:4, 985-997 (1997a).
- D. W. Qi, Computer simulation of coating suspensions. Proceedings, Tappi Advanced Coating Fundamental Symposium, May (Philadelphia, Pennsylvania, 1997b), pp. 201-211.
- D. W. Qi, Lattice Boltzmann Simulations of particles in No-zero-Reynolds-number flows, J. Fluid Mech. 385:41-62 (1999).
- D. W. Qi, Lattice Boltzmann simulations of fluidization of rectangular particles, Int. J. Mul- tiphase Fluid 26(4):421-433 (2000).
- D. W. Qi, Simulations of fluidization of cylindrical multi-particles in a three-dimensional space, Int. J. Multiphase Fluid 27:107 (2001).
- D. W. Rebertus and K. M. Sando, Molecular dynamic simulation of a fluid of hard sphero- cylinders, J. Chem. Phys. 67:2585 (1977).
- G. Segre and A. Silberbergi, Radial Poiseuille flows of suspensions, Nature 189:209 (1961).
- G. Segre and A. Silberbergi, Behavior of macroscopic rigid spheres in Poiseuille flow. Part 1, J. Fluid Mech. 14:115 (1962).
- S. Wolfram, Cellular automaton fluids 1: Basic theory, J. Statist. Phys. 45:471 (1986).