Hierarchical group dynamics in pigeon flocks (original) (raw)


Bird flocks under predation demonstrate complex patterns of collective escape. These patterns may emerge by self-organization from local interactions among group-members. Computational models have been shown to be valuable for identifying what behavioral rules may govern such interactions among individuals during collective motion. However, our knowledge of such rules for collective escape is limited by the lack of quantitative data on bird flocks under predation in the field. In the present study, we analyze the first GPS trajectories of pigeons in airborne flocks attacked by a robotic falcon in order to build a speciesspecific model of collective escape. We use our model to examine a recently identified distance-dependent pattern of collective behavior: the closer the prey is to the predator, the higher the frequency with which flock members turn away from it. We first extract from the empirical data of pigeon flocks the characteristics of their shape and internal structure (bearing angle and distance to nearest neighbors). Combining these with information on their coordination from the literature, we build an agent-based model adjusted to pigeons' collective escape. We show that the pattern of turning away from the predator with increased frequency when the predator is closer arises without prey prioritizing escape when the predator is near. Instead, it emerges through self-organization from a behavioral rule to avoid the predator independently of their distance to it. During this self-organization process, we show how flock members increase their consensus over which direction to escape and turn collectively as the predator gets closer. Our results suggest that coordination among flock members, combined with simple escape rules, reduces the cognitive costs of tracking the predator while flocking. Such escape rules that are independent of the distance to the predator can now be investigated in other species. Our study showcases the important role of computational models in the interpretation of empirical findings of collective behavior. We fill this gap by firstly analyzing GPS data of pigeon flocks under attack by a roboticpredator and secondly studying their collective escape in a computer simulation. Previous research on pigeons has revealed that flock members turn away from the predator more the closer the predator gets. Using computer simulations that are based on pigeon-specific characteristics of motion and coordination among individuals, we study what escape rules at the individual level may underlie this distance-dependent pattern. We show that, even if individuals do not intend to escape more when the predator is closer, their escape frequency still increases the closer they get to the predator. This happens by self-organization from the coordination among individuals and despite their tendency to turn away from the predator being distance-independent. A key aspect of this process is the increasing consensus among flock members over the escape direction when the predator gets closer.

One of the most impressive features of moving animal groups is their ability to perform sudden coherent changes in travel direction. While this collective decision can be a response to an external alarm cue, directional switching can also emerge from the intrinsic fluctuations in individual behaviour. However, the cause and the mechanism by which such collective changes of direction occur are not fully understood yet. Here, we present an experimental study of spontaneous collective turns in natural flocks of starlings. We employ a recently developed tracking algorithm to reconstruct three-dimensional trajectories of each individual bird in the flock for the whole duration of a turning event. Our approach enables us to analyse changes in the individual behaviour of every group member and reveal the emergent dynamics of turning. We show that spontaneous turns start from individuals located at the elongated tips of the flocks, and then propagate through the group. We find that birds on...

The evolution of group living transformed the history of animal life on earth, yielding substantial selective benefits. Yet, without overcoming fundamental challenges such as how to coordinate movements with conspecifics, animals cannot maintain cohesion, and coordination is thus a prerequisite for the evolution of sociality in nonstationary animals. Although it has been considered that animal groups must coordinate the timing and direction of movements, coordinating speed is also essential to prevent the group from splitting. We investigated speed consensus in homing pigeon, Columba livia, flocks using high-resolution GPS. Despite observable differences in average solo speed (which was positively correlated with bird mass) compromises of up to 6% from the preferred solo speed were made to reach consensus in flocks. These results match theory which suggests that groups fly at an intermediate of solo speeds, which suggests speed averaging. By virtue of minimizing extreme compromises, speed averaging can maximize selective benefits across the group, suggesting shared consensus for group speed could be ubiquitous across taxa. Nevertheless, despite group-wide advantages, contemporary flight models have suggested unequal energetic costs in favour of individuals with intermediate body mass/preferred speed (hence the 'Goldilocks principle').