Mechanism and structure-reactivity correlation in the homogeneous, unimolecular elimination kinetics of 2-substituted ethyl methylcarbonates in the gas phase (original) (raw)
2003, Journal of Physical Organic Chemistry
The gas-phase elimination kinetics of 2-substituted ethyl methylcarbonates were determined in a static reaction system over the temperature range of 323–435°C and pressure range 28.5–242 Torr. The reactions are homogeneous, unimolecular and follow a first-order rate law. The kinetic and thermodynamic parameters are reported. The 2-substituents of the ethyl methylcarbonate (CH3OCOOCH2CH2Z, Z=substituent) give an approximate linear correlation when using the Taft–Topsom method, log(kZ/kH)=−(0.57±0.19)σα+(1.34±0.49)σR− (r=0.9256; SD=0.16) at 400°C. This result implies the elimination process to be sensitive to steric factors, while the electronic effect is unimportant. However, the resonance factor has the greatest influence for a favorable abstraction of the β-hydrogen of the Cβ—H bond by the oxygen carbonyl. Because ρα is significant, a good correlation of the alkyl substituents of carbonates with Hancock's steric parameters was obtained: log(kR/kH) versus ESC for CH3OCOOCH2CH2R at 400°C, R=alkyl, δ=−0.17 (r=0.9993, SD=0.01). An approximate straight line was obtained on plotting these data with the reported Hancock's correlation of 2-alkyl ethylacetates. This result leads to evidence for the β-hydrogen abstraction by the oxygen carbonyl and not by the alkoxy oxygen at the opposite side of the carbonate. The carbonate decompostion is best described in terms of a concerted six-membered cyclic transition state type of mechanism. Copyright © 2003 John Wiley & Sons, Ltd.