Material Formulation of Finite-Strain Thermoelasticity and Applications (original) (raw)

Abstract

The present contribution exhibits in a rational manner the progress recently achieved in the understanding of the canonical formulation of thermoelasticity on the material manifold. This formulation places in evidence the critical role played by the notion of material Eshelby stress in an equation that exhibits original source terms due to therm al effects, either in the bulk or at moving interfaces. Therm al effects are manifested here as quasi-inhomogeneity effects. This formulation captures well field singularities and in fact allows for the thermomechanical formulation of forces driving defects. Such a formulation also applies directly to devising a thermodynamically based numerical scheme using the notion of Schottky discrete systems.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (75)

  1. J. B. Fourier, Theorie analytique de la chaleur, Firmin Didot, Paris, 1822. Â
  2. J. M. C. Duhamel, Second Me moire sur les Phenomenes Thermo-mecaniques, J. Ecole Polytech- Â Â Á Â nique, vol. 15, no. 25, pp. 1 ] 57, 1837.
  3. J. M. C. Duhamel, Memoire sur le calcul des actions moleculaires developpees par les changements     s . de temperature dans les corps solides, Memoirs par Divers Savans Acad. Sci. Paris , vol. 5, pp.   440 ] 498, 1838.
  4. G. A. Maugin, The Therm omechanics of Plasticity and Fracture, Cambridge University Press, U.K., 1992.
  5. J. D. Eshelby, Force on an Elastic Singularity, Phil. Trans. Roy. Soc. London, Ser. A, vol. 244, pp. 87 ] 112, 1951.
  6. M. Epstein and G. A. Maugin, The Energy-momentum Tensor and Mate rial Uniformity in Finite Elasticity, Acta Mech., vol. 83, pp. 127 ] 133, 1990.
  7. M. Epstein and G. A. Maugin, Notions of Mate rial uniformity and Homogeneity, in T. Tatsumi, E. s . s .
  8. Watanabe, and T. Kambe eds. , Theoretical and Applied Mechanics Proc. ICTAM `96, Kyoto , pp. 201 ] 215, Elsevier, Amsterdam, 1997.
  9. B. A. Boley and J. H. Weiner, Therm oelasticity, J. Wiley, New York, 1960. s .
  10. D. E. Carlson, Linear Thermoelasticity, in C. A. Truesdell ed. , Handbuch der Physik, vol. VI r 2, pp. 297 ] 345, Springer-Verlag, Berlin, 1972. s .
  11. R. B. Hetnarski ed. , Therm al Stresses, Vol. I., Elsevier, Amsterdam, 1986. s .
  12. W. Nowacki, Therm oelasticity transl. from Polish , 2nd Edition, Pergamon Press, Oxford and P.W.N., Warsaw, 1986. s .
  13. E. S. Suhubi, Thermoelastic Solids, in A. C. Eringen ed. , Continuum Physics, Vol. 2, pp. 174 ] 265, Academic Press, New York, 1975.
  14. G. A. Maugin, Continuum Mechanics of Electromagnetic Solids, North-Holland, Amsterdam, 1988.
  15. A. N. Abd-Alla, A. F. Ghaleb, and G. A. Maugin, Harmonic-Wave Generation in Nonlinear Thermoelasticity, Int. J. Engrg. Sci., vol. 32, pp. 1103 ] 1116, 1994.
  16. G. A. Maugin and C. Trimarco, Pseudo-momentum and Mate rial Forces in Finite Elasticity: Variational Formulations and Application to Brittle Fracture , Acta Mech., vol. 94, pp. 1 ] 28, 1992.
  17. G. A. Maugin, Material Inhomogeneities in Elasticity, Chapman and Hall, London, 1993.
  18. G. A. Maugin, On Ericksen's Identity and Material Balance Laws in Thermoelasticity and Akin s . Phenomena, in R. C. Batra and M. F. Beatty eds. , Contemporary Research in the Mechanics and s . Mathem atics of Materials J. L. Ericksen's 70th Anniversary Volume , pp. 397 ] 407, C.I.M.N.E., Barcelona, 1996.
  19. G. A. Maugin, Mate rial Forces: Concepts and Applications, Appl. Mech. Rev., vol. 48, pp. 213 ] 245, 1995.
  20. G. A. Maugin, Balance Law of Pseudomomentum in the Mechanics and Electrodynamics of Continua, C. R. Acad. Sci. Paris, Ser. II, vol. 311, pp. 763 ] 768, 1990.
  21. M. Epstein and G. A. Maugin, Thermoelastic Mate rial Forces: Definition and Geometric Concepts, C. R. Acad. Sci. Paris, Ser. II, vol. 320, pp. 63 ] 68, 1995.
  22. M. Epstein and G. A. Maugin, An Appraisal of the Thermoelastic Material Stress Tensor, in s .
  23. W. Walter ed. , Rein de Boer' s Festschrift, pp. 83 ] 90, Forschunsbereichte aus dem Fachbereich Bausen, Universitat Gesam. Essen, 1995. Í s .
  24. M. Epstein, Eshelby-like tensors in Thermoelasticity, in W. Muschik and G. A. Maugin eds. , Nonlinear Thermodynamical Processes in Continua, pp. 147 ] 159, TUB-Dokumentation Kongress und Tagungen; Heft 61, Berlin, 1992.
  25. A. Fomethe and G. A. Maugin, Mate rial Forces in Thermoelastic Ferromagnets, Cont. Mech. and Thermodynamics, vol. 8, pp. 275 ] 292, 1996.
  26. G. A. Maugin, On the Formal Structure of the Theory of Polar Elasticity, Phil. Trans. Roy. Soc. London, Ser. A, vol. 356, pp. 1367 ] 1395, 1998.
  27. C. Dascalu and G. A. Maugin, Forces materielles et taux de restitution de l'energie dans les corps   elastiques ave c defauts, C. R. Acad. Sci. Paris, Ser. II, vol. 317, pp. 1135 ] 1140, 1994.
  28. M. E. Gurtin, Thermodynamics and the Griffith Criterion for Brittle Fracture, Int. J. Solids Struct., vol. 15, pp. 553 ] 560, 1979.
  29. Nguye n Quoc Son, Methodes energetiques en mecanique de la rupture, J. Mecanique, vol. 19, pp. Â Â Â Â Â 363 ] 386, 1980.
  30. J. R. Rice, Path-independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks, Trans ASME. J. Appl. Mech., vol. 33, pp. 378 ] 385, 1968.
  31. H. D. Bui, Mecanique de la rupture fragile, Masson, Paris, 1978. Â
  32. H. D. Bui, Introduction to Inverse Methods in the Mechanics of Materials, Transl. from the 1993 Fre nch edition, C.R.C., Boca Raton, FL, 1994.
  33. B. R. Bass and J. W. Bryson, Energy-rele ase Rate Technique for Combined Thermomechanical Loading, Int. J. Fracture, vol. 8, pp. 49 ] 66, 1983.
  34. W. K. Wilson and I. W. Yu, The Use of the J-integral in Thermal Stress Crack Problems, Int. J. Fracture, vol. 4, pp. 377 ] 387, 1979.
  35. Li Xu, J-integral and J*-integral in Thermal Stress Conditions, Eng. Fract. Mech., vol. 45, pp. 713 ] 715, 1993.
  36. G. Francfort and A. Golebiewska-He rrmann, Conservation Laws and Material Momentum in Thermoelasticity, Trans. ASME. J. Appl. Mech., vol. 49, pp. 710 ] 714, 1982.
  37. G. Francfort and A. Golebiewska-Herrmann, Contour Integral and an Energy Release Rate in Thermoelasticity, Int. J. Solids Struct., vol. 22, pp. 759 ] 766, 1986.
  38. P. Sansen, Formulation energetique d'un critere de rupture d'un solide sous Sollicitations ther- Â Â Á miques, Thesis, Universite des Sciences et Techniques de Lille, France, 1999. Â
  39. A. E. Green and P. M. Naghdi, Thermoelasticity Without Energy Dissipation, J. Elasticity, vol. 31, pp. 189 ] 208, 1993.
  40. C. Dascalu and G. A. Maugin, The Thermoelastic Material-mome ntum Equation, J. Elasticity, vol. 39, pp. 201 ] 212, 1995.
  41. G. A. Maugin and T. Inoue, Progress of Phase Boundaries and Walls in Thermodeformable Solids: s .
  42. A Canonical Approach, in E. Busso and G. Caille taud eds. , Proc. EMMC2 on the Mechanics of Materials: Multiphysics Approach, Editions de Physique , Paris, 1998. s .
  43. J. Mandel, Cours de Mecanique des Milieux Continus Ecole Polytechnique , Vol. I., Gauthier-Villars, Â Paris, 1966. s .
  44. P. Germain, Shock Waves, Jump relations and Structures, in C.-S. Yih ed. , Advances in Applied Mechanics, pp. 131 ] 194, Academic Press, New York, 1972.
  45. L. M. Truskinowsky, About the ``Normal Growth'' Approximation in the Dynamical Theory of Phase Transitions, Cont. Mech. and Thermodynam ics, vol. 6, pp. 185 ] 208, 1994.
  46. L. M. Truskinowskii, Dynamics of Non-equilibrium Phase Boundaries in a Heat Conducting s . Nonlinearly Elastic Medium, P. M.M. English Transl. , vol. 51, pp. 777 ] 784, 1987.
  47. G. A. Maugin and C. Trimarco, Configurational Forces and Coherent Phase-Transition Fronts s . s . IUTAM-ISIMM Symp., Nottingham, 1994 , in D. F. Parker and A. H. England eds. , Anisotropy, Inhomogeneity and Nonlinearity in Solid Mechanics, pp. 345 ] 350, Kluwer, Dordrecht, 1994.
  48. G. A. Maugin and C. Trimarco, Dissipation of Configurational Forces in Elastic Solids, Arch. Mech., vol. 47, pp. 81 ] 99, 1995.
  49. G. A. Maugin and C. Trimarco, Dynamics of Configurational Forces at Phase-transition Fronts, Meccanica, vol. 30, pp. 605 ] 619, 1995.
  50. G. A. Maugin and C. Trimarco, Irre versible Progre ss of Phase -transition Fronts in Thermoelastic s . Conductors, in R. B. Hetnarski and N. Noda eds. , Thermal Stresses 1995, pp. 505 ] 507, Publ. Shizuoka Univ., Hamamatsu, Japan, 1995.
  51. G. A. Maugin, On Shock Waves and Phase -transition Fronts in Continua, ARI, vol. 50, pp. 141 ] 150, Springer-Verlag, New York, 1998. s
  52. G. A. Maugin, Thermomechanics of Forces Driving Singular Point Sets in Honor of H. Zorski's .
  53. Anniversary , Arch. Mech., vol. 50, pp. 489 ] 498, 1998.
  54. M. Grinfeld, Therm odynamic Methods in the Theory of Heterogeneous Systems, ISIMM Series, Longman, Harlow, Essex, 1991.
  55. G. A. Maugin and W. Muschik, Thermodynamics with Internal Variables-I, II, J. Non-Equilibr. Thermodynam., vol. 19, pp. 217 ] 249 and 250 ] 289, 1994.
  56. J. Engelbrecht and G. A. Maugin, Deformation Wave s in Thermoelastic Me dia and the Concept of Internal Variables, Arch. Appl. Mech., vol. 66, pp. 200 ] 207, 1996.
  57. G. A. Maugin, Internal Variables and Dissipative Structures, J. Non-Equilibrium Therm odynamics, vol. 15, pp. 213 ] xxx, 1990.
  58. G. A. Maugin, Thermomechanics of Inhomogeneous-heterogeneous Systems: Application to the Irre versible Progress of Two and Three-dimensional Defects, ARI, vol. 50, pp. 41 ] 56, Springer- Verlag, New York, 1997.
  59. G. A. Maugin, Canonical Approach to Thermoelastic Solids with We akly Nonlocal Microstructure: s . Application to Fracture and Phase -transition Fronts, in R. B. Hetnarski and N. Noda eds. , Therm al Stresses 1997, pp. 425 ] 428. R.I.T., Lastran, Rochester, 1997.
  60. C. Stolz, Sur la propagation d'une ligne de discontinuite et la fonction generatrice de choc pour un    solide anelastique, C. R. Acad. Sci. Paris, Ser. II, vol. 307, pp. 1997 ] 2000, 1989. Â
  61. C. Stolz, Sur le probleme d'evolution thermomecanique des solides a changement brutal des Á Â Â Á caracteristiques, C. R. Acad. Sci. Paris, Ser. II, vol. 318, pp. 1425 ] 1428, 1994. Â
  62. G. A. Maugin, The Role of Canonical Balance Laws in the Study of the Progre ss of ``Defects'' in s . Microstructured Solids, in A. Bertram and F. Sidoroff eds. , Proc. EMMC2 on the Mechanics of Materials with a Characteristic Length, J. Phys. IV France, Vol. 8, pp. 231 ] 238, Editions de Physique, Paris, 1998.
  63. G. A. Maugin, Thermomechanics of Nonlinear Irreversible Behaviours, World Scientific Publ., Singa- pore, 1999.
  64. G. A. Maugin, T. Inoue, and S. Imatani, Configurational or ``Material' ' Force of Inhomogeneity at Interfaces in Composites, Trans. Jap. Soc. Mech. Engrg., 1999.
  65. T. R. Hsu, The Finite Element Method in Therm omechanics, Allen and Unwin, Boston, 1986.
  66. G. A. Maugin and C. I. Christov, Nonlinear Wave s and Conservation Laws, in J. Haddow and J. L. s . Wegner eds. , Nonlinear Wave Phenomena, Birkhauser, Base l, New York, to appear, 1999. Í
  67. G. A. Maugin, Nonlinear Waves in Elastic Crystals, Oxford University Press, U.K., 1999.
  68. W. Muschik, Aspects of Non-equilibrium Thermodynamics, World Scientific Publ., Singapore, 1990.
  69. W. Muschik and A. Berezovski, Thermodynamic Interaction Betwe en Two Discrete Systems in Non-equilibrium, 1999, in preparation.
  70. A. Berezovski, Continuous Cellular Automata for Simulation of Thermoelasticity, Proc. Estonian Acad. Sci. Math. Phys., vol. 46, pp. 5 ] 13, 1997.
  71. A. Berezovski, Simulation of Nonlinear He at Conduction by Me ans of a Thermodynamics Based Algorithm, Int. J. Numer. Meth. Heat Fluid Flow, vol. 7, pp. 711 ] 721, 1997. MATERIAL FORMULATION OF FINITE-STRAIN THERMOELASTICITY 449
  72. A. Berezovski and G. A. Maugin, Thermodynamics of Discrete Systems: Application to Inhomoge- neous Solids, Res. Report No. 192 r 98, Inst. Cybernetics, Tallinn, to be published, 1998.
  73. A. Berezovski and G. A. Maugin, Application of High-resolution Wave Propagation Algorithm to Two-dimensional Elastic-Wave Propagation, Res. Report No. 197 r 99, Inst. Cybernetics, Tallinn, to be published, 1999.
  74. A. Berezovski and G. A. Maugin, A Thermodynamic Criterion for Phase-transitions Front Propaga- tion, in preparation, 1999. s .
  75. W. Schottky, H. Ulich, and C. Wagner, Thermodynamik revised edition augmented by W. Muschik , Springer-Verlag, Berlin, 1973.