Genetic risk for malignant hyperthermia in non-anesthesia-induced myopathies (original) (raw)

Genetic risk factors associated with lipid-lowering drug-induced myopathies

Muscle & Nerve, 2006

Lipid-lowering drugs produce myopathic side effects in up to 7% of treated patients, with severe rhabdomyolysis occurring in as many as 0.5%. Underlying metabolic muscle diseases have not been evaluated extensively. In a cross-sectional study of 136 patients with drug-induced myopathies, we report a higher prevalence of underlying metabolic muscle diseases than expected in the general population. Control groups included 116 patients on therapy with no myopathic symptoms, 100 asymptomatic individuals from the general population never exposed to statins, and 106 patients with non-statin-induced myopathies. Of 110 patients who underwent mutation testing, 10% were heterozygous or homozygous for mutations causing three metabolic myopathies, compared to 3% testing positive among asymptomatic patients on therapy (P ϭ 0.04). The actual number of mutant alleles found in the test group patients was increased fourfold over the control group (P Ͻ 0.0001) due to an increased presence of mutation homozygotes. The number of carriers for carnitine palmitoyltransferase II deficiency and for McArdle disease was increased 13-and 20-fold, respectively, over expected general population frequencies. Homozygotes for myoadenylate deaminase deficiency were increased 3.25-fold with no increase in carrier status. In 52% of muscle biopsies from patients, significant biochemical abnormalities were found in mitochondrial or fatty acid metabolism, with 31% having multiple defects. Variable persistent symptoms occurred in 68% of patients despite cessation of therapy. The effect of statins on energy metabolism combined with a genetic susceptibility to triggering of muscle symptoms may account for myopathic outcomes in certain high-risk groups.

Genotype-phenotype correlations in recessive RYR1-related myopathies

Orphanet Journal of Rare Diseases, 2013

Background RYR1 mutations are typically associated with core myopathies and are the most common overall cause of congenital myopathy. Dominant mutations are most often associated with central core disease and malignant hyperthermia, and genotype-phenotype patterns have emerged from the study of these mutations that have contributed to the understanding of disease pathogenesis. The recent availability of genetic testing for the entire RYR1 coding sequence has led to a dramatic expansion in the identification of recessive mutations in core myopathies and other congenital myopathies. To date, no clear patterns have been identified in these recessive mutations, though no systematic examination has yet been performed. Methods In this study, we investigated genotype-phenotype correlations in a large combined cohort of unpublished (n = 14) and previously reported (n = 92) recessive RYR1 cases. Results Overall examination of this cohort revealed nearly 50% of cases to be non-core myopathy r...

Statin-associated myopathy: from genetic predisposition to clinical management

Physiological research / Academia Scientiarum Bohemoslovaca, 2014

Statin-associated myopathy (SAM) represents a broad spectrum of disorders from insignificant myalgia to fatal rhabdomyolysis. Its frequency ranges from 1-5 % in clinical trials to 15-20 % in everyday clinical practice. To a large extent, these variations can be explained by the definition used. Thus, we propose a scoring system to classify statin-induced myopathy according to clinical and biochemical criteria as 1) possible, 2) probable or 3) definite. The etiology of this disorder remains poorly understood. Most probably, an underlying genetic cause is necessary for overt SAM to develop. Variants in a few gene groups that encode proteins involved in: i) statin metabolism and distribution (e.g. membrane transporters and enzymes; OATP1B1, ABCA1, MRP, CYP3A4), ii) coenzyme Q10 production (e.g. COQ10A and B), iii) energy metabolism of muscle tissue (e.g. PYGM, GAA, CPT2) and several others have been proposed as candidates which can predispose to SAM. Pharmacological properties of indiv...

RYR1 causing distal myopathy

Molecular Genetics & Genomic Medicine

Background Congenital myopathies due to ryanodine receptor (RYR1) mutations are increasingly identified and correlate with a wide range of phenotypes, most commonly that of malignant hyperthermia susceptibility and central cores on muscle biopsy with rare reports of distal muscle weakness, but in the setting of early onset global weakness. Methods We report a case of a patient presenting with childhood onset hand stiffness and adult onset progressive hand weakness and jaw contractures discovered to have two variants in the RYR1 gene. Results The patient manifested with distal upper limb weakness which progressed to involve the distal lower limb, proximal upper limb, as well as the face in addition to limited jaw opening. Creatine kinase was mildly elevated with EMG findings supporting a myopathy. Muscle biopsy showed features consistent with centronuclear myopathy. Whole exome sequencing revealed a novel heterozygous pathogenic variant in RYR1 (c.12315_12328delAGAAATCCAGTTCC, p.Glu4106Alafs*8), and a heterozygous missense variant (c.10648C>T, p.Arg3550Trp) of unknown significance in compound heterozygous state. Conclusion We expand the spectrum of RYR1-related myopathy with the description of a novel phenotype in an adult patient presenting with hand weakness and suggest considering RYR1 analysis in the diagnosis of distal myopathies.

A novel late-onset axial myopathy associated with mutations in the skeletal muscle ryanodine receptor (RYR1) gene

Journal of Neurology, 2013

Mutations in the skeletal muscle ryanodine receptor (RYR1) gene are a common cause of inherited neuromuscular disorders and have been associated with a wide clinical spectrum, ranging from various congenital myopathies to the malignant hyperthermia susceptibility (MHS) trait without any associated weakness. RYR1-related myopathies are usually of early-childhood onset. Here we present 11 patients from 8 families with a late-onset axial myopathy associated with RYR1 variants. Patients presented between the third and seventh decade of life to neuromuscular centres in Norway, the Netherlands and the United Kingdom with predominant axial muscle involvement, comprising variable degrees of lumbar hyperlordosis, scapular winging and/or camptocormia. Marked myalgia was commonly associated. Serum creatine kinase levels were normal or moderately elevated. Muscle imaging showed consistent involvement of the lower paravertebral muscles and the posterior thigh. Muscle biopsy findings were often discrete, featuring variability in fibre size, increased internal nuclei and unevenness of oxidative enzyme staining, but only rarely overt cores. RYR1 sequencing revealed heterozygous missense variants, either previously associated with the MHS trait or localizing to known MHS mutational hotspots. These findings indicate that MHS-related RYR1 mutations may present later in life with prominent axial weakness but not always typical S. Løseth and N. C. Voermans contributed equally.

A recurrent RYR1 mutation associated with early-onset hypotonia and benign disease course

Acta Neuropathologica Communications, 2021

The ryanodine receptor RyR1 is the main sarcoplasmic reticulum Ca2+ channel in skeletal muscle and acts as a connecting link between electrical stimulation and Ca2+-dependent muscle contraction. Abnormal RyR1 activity compromises normal muscle function and results in various human disorders including malignant hyperthermia, central core disease, and centronuclear myopathy. However, RYR1 is one of the largest genes of the human genome and accumulates numerous missense variants of uncertain significance (VUS), precluding an efficient molecular diagnosis for many patients and families. Here we describe a recurrent RYR1 mutation previously classified as VUS, and we provide clinical, histological, and genetic data supporting its pathogenicity. The heterozygous c.12083C>T (p.Ser4028Leu) mutation was found in thirteen patients from nine unrelated congenital myopathy families with consistent clinical presentation, and either segregated with the disease in the dominant families or occurre...

Molecular mechanisms and phenotypic variation in RYR1-related congenital myopathies

Brain, 2007

Dominant mutations in the skeletal muscle ryanodine receptor (RYR1) gene are well-recognized causes of both malignant hyperthermia susceptibility (MHS) and central core disease (CCD). More recently, recessive RYR1 mutations have been described in few congenital myopathy patients with variable pathology, including multiminicores. Although a clinical overlap between patients with dominant and recessive RYR1 mutations exists, in most cases with recessive mutations the pattern of muscle weakness is remarkably different from that observed in dominant CCD. In order to characterize the spectrum of congenital myopathies associated with RYR1 mutations, we have investigated a cohort of 44 patients from 28 families with clinical and/or histopathological features suggestive of RYR1 involvement. We have identified 25 RYR1 mutations, 9 of them novel, including 12 dominant and 13 recessive mutations. With only one exception, dominant mutations were associated with a CCD phenotype, prominent cores and predominantly occurred in the RYR1 C-terminal exons 101 and 102. In contrast, the 13 recessive RYR1 mutations were distributed evenly along the entire RYR1 gene and were associated with a wide range of clinicopathological phenotypes. Protein expression studies in nine cases suggested a correlation between specific mutations, RyR1 protein levels and resulting phenotype: in particular, whilst patients with dominant or recessive mutations associated with typical CCD phenotypes appeared to have normal RyR1 expression, individuals with more generalized weakness, multi-minicores and external ophthalmoplegia had a pronounced depletion of the RyR1 protein.

{"__content__"=>"Novel Variants in Individuals with -Related Congenital Myopathies: Genetic, Laboratory, and Clinical Findings.", "i"=>{"__content__"=>"RYR1"}}

Frontiers in neurology, 2018

The ryanodine receptor 1-related congenital myopathies (-RM) comprise a spectrum of slow, rare neuromuscular diseases. Affected individuals present with a mild-to-severe symptomatology ranging from proximal muscle weakness, hypotonia and joint contractures to scoliosis, ophthalmoplegia, and respiratory involvement. Although there is currently no FDA-approved treatment for RM, our group recently conducted the first clinical trial in this patient population (NCT02362425). This study aimed to characterize novel variants with regard to genetic, laboratory, muscle magnetic resonance imaging (MRI), and clinical findings. Genetic and histopathology reports were obtained from participant's medical records. Alamut Visual Software was used to determine if participant's variants had been previously reported and to assess predicted pathogenicity. Physical exams, pulmonary function tests, T1-weighted muscle MRI scans, and blood measures were completed during the abovementioned clinical t...

Pharmacogenetics and statin-related myopathy: what do we know?

Pharmacogenomics, 2020

Studying adverse events in patients on statin therapy is important to predict and prevent direct statin-induced harm, and to also potentially prevent increased incident of CVD associated with premature statin discontinuation and nonadherence attributable to statin adverse events. "