Molecular, Supramolecular, and Macromolecular Motors and Artificial Muscles (original) (raw)

Controlling Motion at the Nanoscale: Rise of the Molecular Machines

ACS Nano, 2015

As our understanding and control of intra-and intermolecular interactions evolve, ever more complex molecular systems are synthesized and assembled that are capable of performing work or completing sophisticated tasks at the molecular scale. Commonly referred to as molecular machines, these dynamic systems comprise an astonishingly diverse class of motifs and are designed to respond to a plethora of actuation stimuli. In this Review, we outline the conditions that distinguish simple switches and rotors from machines and draw from a variety of fields to highlight some of the most exciting recent examples of opportunities for driven molecular mechanics. Emphasis is placed on the need for controllable and hierarchical assembly of these molecular components to display measurable effects at the micro-, meso-, and macroscales. As in Nature, this strategy will lead to dramatic amplification of the work performed via the collective action of many machines organized in linear chains, on functionalized surfaces, or in three-dimensional assemblies.

Molecular Motors, Actuators, and Mechanical Devices

Atomically precise manufacturing systems, such as those described in Nanosystems [1], will utilize molecular motors and actuators 1 that drive components to perform useful work. The conversion of electrical and chemical energy into mechanical motion is facilitated by the use of gears, bearings, drive shafts, springs, and so forth, to direct the motion of components and minimize energy losses. Thus, research efforts dedicated to produce these sorts of components are considered to be both a direct pathway in our Roadmap and an enabler of other pathways that can take advantage of these molecular mechanical devices and the fabrication techniques developed to produce them. This section summarizes the state-of-the-art in the construction of these devices and describes their relevance to the Roadmap. Table 3 at the end of this section provides a summary of representative molecular motors, actuators, and mechanical devices.

A Mechanical Actuator Driven Electrochemically by Artificial Molecular Muscles

Acs Nano, 2009

A microcantilever, coated with a monolayer of redox-controllable, bistable [3]rotaxane molecules (artificial molecular muscles), undergoes reversible deflections when subjected to alternating oxidizing and reducing electrochemical potentials. The microcantilever devices were prepared by precoating one surface with a gold film and allowing the palindromic [3]rotaxane molecules to adsorb selectively onto one side of the microcantilevers, utilizing thiol-gold chemistry. An electrochemical cell was employed in the experiments, and deflections were monitored both as a function of (i) the scan rate (<20 mV s ؊1 ) and (ii) the time for potential step experiments at oxidizing (>؉0.4 V) and reducing (<؉0.2 V) potentials. The different directions and magnitudes of the deflections for the microcantilevers, which were coated with artificial molecular muscles, were compared with (i) data from nominally bare microcantilevers precoated with gold and (ii) those coated with two types of control compounds, namely, dumbbell molecules to simulate the redox activity of the palindromic bistable [3]rotaxane molecules and inactive 1-dodecanethiol molecules. The comparisons demonstrate that the artificial molecular muscles are responsible for the deflections, which can be repeated over many cycles. The microcantilevers deflect in one direction following oxidation and in the opposite direction upon reduction. The ϳ550 nm deflections were calculated to be commensurate with forces per molecule of ϳ650 pN.

Artificial muscles driven by the cooperative actuation of electrochemical molecular machines. Persistent discrepancies and challenges

International Journal of Smart and Nano Materials

Here we review the persisting conceptual discrepancies between different research groups working on artificial muscles based on conducting polymers and other electroactive material. The basic question is if they can be treated as traditional electro-mechanical (physical) actuators driven by electric fields and described by some adaptation of their physical models or if, replicating natural muscles, they are electro-chemo-mechanical actuators driven by electrochemical reaction of the constitutive molecular machines: the polymeric chains. In that case the charge consumed by the reaction will control the volume variation of the muscular material and the motor displacement, following the basic and single Faraday's laws: the charge consumed by the reaction determines the number of exchanged ions and solvent, the film volume variation to lodge/expel them and the amplitude of the movement. Deviations from the linear relationships are due to the osmotic exchange of solvent and to the presence of parallel reactions from the electrolyte, which originate creeping effects. Challenges and limitations are underlined.

Molecular Motors: From Individual to Collective Behavior

Progress of Theoretical Physics Supplement, 1998

We present a simple two state model for the force generation and motion of molecular motors. We discuss the behavior of individual motors and describe how the coupling of motors in large groups can lead to new collective effects like dynamical phase transitions and spontaneous oscillations.

Linear Artificial Molecular Muscles

Journal of the American Chemical Society, 2005

Two switchable, palindromically constituted bistable rotaxanes have been designed and synthesized with a pair of mechanically mobile rings encircling a single dumbbell. These designs are reminiscent of a "molecular muscle" for the purposes of amplifying and harnessing molecular mechanical motions. The location of the two cyclobis(paraquat-p-phenylene) (CBPQT 4+ ) rings can be controlled to be on either tetrathiafulvalene (TTF) or naphthalene (NP) stations, either chemically ( 1 H NMR spectroscopy) or electrochemically (cyclic voltammetry), such that switching of inter-ring distances from 4.2 to 1.4 nm mimics the contraction and extension of skeletal muscle, albeit on a shorter length scale. Fast scan-rate cyclic voltammetry at low temperatures reveals stepwise oxidations and movements of one-half of the [3]rotaxane and then of the other, a process that appears to be concerted at room temperature. The active form of the bistable [3]rotaxane bears disulfide tethers attached covalently to both of the CBPQT 4+ ring components for the purpose of its self-assembly onto a gold surface. An array of flexible microcantilever beams, each coated on one side with a monolayer of 6 billion of the active bistable [3]rotaxane molecules, undergoes controllable and reversible bending up and down when it is exposed to the synchronous addition of aqueous chemical oxidants and reductants. The beam bending is correlated with flexing of the surfacebound molecular muscles, whereas a monolayer of the dumbbell alone is inactive under the same conditions. This observation supports the hypothesis that the cumulative nanoscale movements within surface-bound "molecular muscles" can be harnessed to perform larger-scale mechanical work. J. AM. CHEM. SOC. 2005, 127, 9745-9759 9 9745 (9) For examples of chemically controllable molecular machines, see (a) Lane, A. S.; Leigh, D. A.; Murphy, A. Ballardini, R.; Balzani, V.; Baxter, I.; Credi, A.; Fyfe, M. C. T.; Gandolfi, M. T.; Gómez-López, M.; Martínez-Díaz, M.-V.; Piersanti, A.; Spencer, N.; Stoddart, J. F.; Venturi, M.; White, A. J. P.; Williams, D. J. Raehm, L.; Sauvage, J.-P.; Divisia-Blohorn, B.; Vidal, P.-L. Inorg. Chem. 2000, 39, 1555-1560. (k) Ballardini, R.; Balzani, V.; Dehaen, W.; Dell'Erba, A. E.; Raymo, F. M.; Stoddart, J. F.; Venturi, M. Eur. J. Org. Chem. 2000, 591-602. (l) Collin, J.-P.; Kern, J.-M.; Raehm, L.; Sauvage, J.-P. Molecular Switches; Feringa, B. L., Ed.; Wiley-VCH: Weinheim, 2000; pp 249-280. (m) Altieri, A.; Gatti, F. G.; Kay, E. R.; Leigh, D. A.; Paolucci, F.; Slawin, A. M. Z.; Wong, J. K. Y. J. Am. Chem. Soc. 2003, 125, 8644-8654. (n) Poleschak, I.; Kern, J.-M.; Sauvage, J.-P. Chem. Commun. 2004, 474-476. For examples of optically controllable molecular machines, see: (o) Ballardini, R.; Balzani, V.; Gandolfi, M. T.; Prodi, L.; Venturi, M.; Philp, D.; Ricketts, H. G.; Stoddart, J. F. Angew. Chem., Int. Ed. Engl. 1993, 32, 1301-1303. (p) Ashton, P. R.; Ballardini, R.; Balzani, V.; Credi, A.; Dress, R.; Ishow, E.; Kocian, O.; Preece, J. A.; Spencer, N.; Stoddart, J. F.; Venturi, M.; Wenger, S. Chem. Eur. J. 2000, 6, 3558-3574. (q) Brouwer, A. M.; Frochot, C.; Gatti, F. G.; Leigh, D. A.; Mottier, L.; Paolucci, F.; Roffia, S.; Wurpel, G. W. Len, S.; Wong, J. K. Y.; Bottari, G.; Altieri, A.; Morales, M. A. F.; Teat, S. J.; Frochot, C.; Leigh, D. A.; Brouwer, A. M.; Zerbetto, F.

A nanomechanical device based on linear molecular motors

Applied Physics Letters, 2004

An array of microcantilever beams, coated with a self-assembled monolayer of bistable, redox-controllable [3]rotaxane molecules, undergoes controllable and reversible bending when it is exposed to chemical oxidants and reductants. Conversely, beams that are coated with a redox-active but mechanically inert control compound do not display the same bending. A series of control experiments and rational assessments preclude the influence of heat, photothermal effects, and pH variation as potential mechanisms of beam bending. Along with a simple calculation from a force balance diagram, these observations support the hypothesis that the cumulative nanoscale movements within surface-bound "molecular muscles" can be harnessed to perform larger-scale mechanical work.

Molecular Motors as Components of Future Medical Devices and Engineered Materials

Journal of Nanotechnology in Engineering and Medicine, 2009

A new frontier in the development of prosthetic devices is the design of nanoscale systems which replace, augment, or support individual cells. Similar to cells, such devices will require the ability to generate mechanical movement, either for transport or actuation. Here, the development of nanoscale transport systems, which integrate biomolecular motors, is reviewed. To date, close to 100 publications have explored the design of such “molecular shuttles” based on the integration of synthetic molecules, nano- and microparticles, and micropatterned structures with kinesin and myosin motors and their associated cytoskeletal filaments, microtubules, and actin filaments. Tremendous progress has been made in addressing the key challenges of guiding, loading, and controlling the shuttles, providing a foundation for the exploration of applications in medicine and engineering.