Cytoplasmic Bulk Flow Propels Nuclei in Mature Hyphae of Neurospora crassa (original) (raw)
Related papers
Microtubule dynamics and organization during hyphal growth and branching in Neurospora crassa
Fungal Genetics and …, 2006
By confocal microscopy, we analyzed microtubule (Mt) behavior during hyphal growth and branching in a Neurospora crassa strain whose Mts had been tagged with GFP. Images were assembled spatially and temporally to better understand the 3-D organization of the microtubular cytoskeleton and a clearer view of its dynamics. Cytoplasmic Mts were mainly arranged longitudinally along the hyphal tube. Straight segments were rare; most Mts showed a distinct helical curvature with a long pitch and a tendency to intertwine with one another to form a loosely braided network throughout the cytoplasm. This study revealed that the microtubular cytoskeleton of a hypha advances as a unit, i.e., as the cell elongates, it moves forward by bulk flow. Nuclei appeared trapped in the microtubular network and were carried forward in unison as the hypha elongated. During branching, one or more cortical Mts became associated with the incipient branch and were pulled into the emergence of the branch. As extension of the branch and distortion of the Mts continued, Mts soon were severed with both new Mt ends (+ and À) present in the new branch. Although the exact mechanisms for addition Mt recruitment into the branch remains an open question, the recorded evidence indicates both bulk insertion of established cortical parent-hypha Mts as well as in situ polymerization were involved. The latter conclusion was supported by FRAP studies showing evidence of Mt nucleation and polymerization assembly in the growing tip of the developing branch. Nuclei entered the branch entrapped in the advancing network of Mts.
Eukaryotic Cell, 2011
During filamentous fungus development, multinucleated hyphae employ a system for long-range nuclear migration to maintain an equal nuclear density. A decade ago the microtubule motor dynein was shown to play a central role in this process. Previous studies with Ashbya gossypii revealed extensive bidirectional movements and bypassings of nuclei, an autonomous cytoplasmic microtubule (cMT) cytoskeleton emanating from each nucleus, and pulling of nuclei by sliding of cMTs along the cortex. Here, we show that dynein is the sole motor for bidirectional movements and bypassing because these movements are concomitantly decreased in mutants carrying truncations of the dynein heavy-chain DYN1 promoter. The dynactin component Jnm1, the accessory proteins Dyn2 and Ndl1, and the potential dynein cortical anchor Num1 are also involved in the dynamic distribution of nuclei. In their absence, nuclei aggregate to different degrees, whereby the mutants with dense nuclear clusters grow extremely long...
Microtubule dynamics and the role of molecular motors in Neurospora crassa
Fungal Genetics and …, 2008
Live-cell imaging methods were used to study microtubule dynamics in the apical regions of leading hyphae and germ tubes of Neurospora crassa expressing b-tubulin-GFP. Microtubule polymerization rates in hyphae of N. crassa were much faster than those previously reported in any other eukaryotic organism. In order to address the roles of motor proteins in microtubule dynamic instability in N. crassa, the microtubule-motor mutant strains, Dnkin and ro-1, were examined. Polymerization and depolymerization rates in leading hyphae of these strains were reduced by one half relative to the wild type. Furthermore, microtubules in germ tubes of wild type and microtubule-motor mutants exhibited similar dynamic characteristics as those in hyphae of mutant strains. Small microtubule fragments exhibiting anterograde and retrograde motility were present in leading hyphae of all strains and germ tubes of wild-type strains. Our data suggest that microtubule motors play important roles in regulating microtubule dynamic instability in leading hyphae but not in germ tubes.
Eukaryotic Cell, 2010
Neurospora crassa macroconidia form germ tubes that are involved in colony establishment and conidial anastomosis tubes (CATs) that fuse to form interconnected networks of conidial germlings. Nuclear and cytoskeletal behaviors were analyzed in macroconidia, germ tubes, and CATs in strains that expressed fluorescently labeled proteins. Heterokaryons formed by CAT fusion provided a rapid method for the imaging of multiple labeled fusion proteins and minimized the potential risk of overexpression artifacts. Mitosis occurred more slowly in nongerminated macroconidia (1.0 to 1.5 h) than in germ tubes (16 to 20 min). The nucleoporin SON-1 was not released from the nuclear envelope during mitosis, which suggests that N. crassa exhibits a form of “closed mitosis.” During CAT homing, nuclei did not enter CATs, and mitosis was arrested. Benomyl treatment showed that CAT induction, homing, fusion, as well as nuclear migration through fused CATs do not require microtubules or mitosis. Three ropy mutants (ro-1, ro-3, and ro-11) defective in the dynein/dynactin microtubule motor were impaired in nuclear positioning, but nuclei still migrated through fused CATs. Latrunculin B treatment, imaging of F-actin in living cells using Lifeact-red fluorescent protein (RFP), and analysis of mutants defective in the Arp2/3 complex demonstrated that actin plays important roles in CAT fusion.
Fungal Genetics and Biology, 2002
We have used light and electron microscopy to document the cytoplasmic effects of the ropy (ro-1) mutation in mature hyphae of Neurospora crassa and to better understand the role(s) of dynein during hyphal tip growth. Based on video-enhanced DIC light microscopy, the mature, growing hyphae of N. crassa wild type could be divided into four regions according to cytoplasmic organization and behavior: the apical region (I) and three subapical regions (II, III, and IV). A well-defined Spitzenk€ o orper dominated the cytoplasm of region I. In region II, vesicles ($0.48 lm diameter) and mitochondria maintained primarily a constant location within the advancing cytoplasm. This region was typically void of nuclei. Vesicles exhibited anterograde and retrograde motility in regions III and IV and followed generally parallel paths along the longitudinal axis of the cell. A small population of mitochondria displayed rapid anterograde and retrograde movements, while most maintained a constant position in the advancing cytoplasm in regions III and IV. Many nuclei occupied the cytoplasm of regions III and IV. In ro-1 hyphae, discrete cytoplasmic regions were not recognized and the motility and/or positioning of vesicles, mitochondria, and nuclei were altered to varying degrees, relative to the wild type cells. Immunofluorescence microscopy revealed that the microtubule cytoskeleton was severely disrupted in ro-1 cells. Transmission electron microscopy of cryofixed cells confirmed that region I of wild-type hyphae contained a Spitzenk€ o orper composed of an aggregation of small apical vesicles that surrounded entirely or partially a central core composed, in part, of microvesicles embedded in a dense granular to fibrillar matrix. The apex of ro-1 the hypha contained a Spitzenk€ o orper with reduced numbers of apical vesicles but maintained a defined central core. Clearly, dynein deficiency in the mutant caused profound perturbation in microtubule organization and function and, consequently, organelle dynamics and positioning. These perturbations impact negatively on the organization and stability of the Spitzenk€ o orper, which, in turn, led to severe reduction in growth rate and altered hyphal morphology.
Molecular Microbiology, 1997
Nuclear migration and nuclear positioning are fundamental processes in all eukaryotic cells. They are easily monitored during hyphal growth of filamentous fungi. We expressed the green fluorescent protein (GFP) as a fusion protein with the putative nuclear localization domain of the transcriptional activator stuA in nuclei of Aspergillus nidulans and visualized these organelles in living cells. Nuclear staining was observed in interphase nuclei but not during mitosis. Nuclear division, nuclear migration, septum formation and branching were analysed with time-lapse video microscopy during hyphal extension. Hyphae elongated at 0.1-1.2 m min ¹1 and nuclei moved with similar speeds towards the hyphal tip until they had reached a defined position. An individual regulation of nuclear mobility in a given hyphal compartment was observed. Some representative movies are available on the Internet (http:/ /www.blacksci.co.uk/products/journals/molextra.htm). Nuclear positioning was also studied at the molecular level. The ApsA protein, which regulates nuclear migration, was localized at the cytoplasmic membrane in germlings and hyphae by immunofluorescence and GFP tagging. A model of nuclear migration, nuclear positioning and the role of ApsA is presented.
Cell Motility and The Cytoskeleton, 1999
While it is now recognised that transport within the endomembrane system may occur via membranous tubules, spatial regulation of this process is poorly understood. We have investigated the role of the cytoskeleton in regulating the motility and morphology of the motile vacuole system in hyphae of the fungus Pisolithus tinctorius by studying (1) the effects of anti-microtubule (oryzalin, nocodazole) and anti-actin drugs (cytochalasins, latrunculin) on vacuolar activity, monitored by fluorescence microscopy of living cells; and (2) the ultrastructural relationship of microtubules, actin microfilaments, and vacuoles in hyphae prepared by rapid-freezing and freeze-substitution. Anti-microtubule drugs reduced the tubular component of the vacuole system in a dose-dependent and reversible manner, the extent of which correlated strongly with the degree of disruption of the microtubule network (monitored by immunofluorescence microscopy). The highest doses of anti-microtubule drugs completely eliminated tubular vacuoles, and only spherical vacuoles were observed. In contrast, anti-actin drugs did not reduce the frequency of tubular vacuoles or the motility of these vacuoles, even though immunofluorescence microscopy confirmed perturbation of microfilament organisation. Electron microscopy showed that vacuoles were always accompanied by microtubules. Bundles of microtubules were found running in parallel along the length of tubular vacuoles and individual microtubules were often within one microtubule diameter of a vacuole membrane. Our results strongly support a role for microtubules, but not actin microfilaments, in the spatial regulation of vacuole motility and morphology in fungal hyphae. Cell Motil.
Development, 2016
Cellular migrations through constricted spaces are a critical aspect of many developmental and disease processes including hematopoiesis, inflammation, and metastasis. A limiting factor in these events is nuclear deformation. Here, we establish an in vivo model where nuclei can be visualized while moving through constrictions and use it to elucidate mechanisms for nuclear migration. C. elegans hypodermal P-cell larval nuclei traverse a narrow space about 5% their width. This constriction is blocked by fibrous organelles, structures connecting the muscles to cuticle through P cells. Fibrous organelles are removed just prior to nuclear migration, when nuclei and lamins undergo extreme morphological changes to squeeze through the space. Both actin and microtubule networks are organized to mediate nuclear migration. The LINC complex, consisting of the SUN protein UNC-84 and the KASH protein UNC-83, recruits dynein and kinesin-1 to the nuclear surface. Both motors function in P-cell nucl...