Using Conceptual Models in Ecosystem Restoration Decision Making: An Example from the Sacramento-San Joaquin River Delta, California (original) (raw)
Related papers
San Francisco Estuary and Watershed Science, 2012
The Sacramento-San Joaquin Delta (the Delta) is located on the western edge of California's Central Valley and is of critical ecological and economic importance. However, ecosystem alterations for human uses changed many of the Delta's natural processes, and it is now considered in need of restoration. An approach was developed to evaluate and rank restoration actions in the Delta under the Ecosystem Restoration Program's Delta Regional Ecosystem Restoration Implementation Plan (DRERIP). The DRERIP approach provides an explicit framework for evaluating restoration actions, using linked conceptual models, an action evaluation procedure, and a decision-support tool. Conceptual models allow scientists and managers to synthesize scientific information and make qualitative predictions about ecosystem function and restoration outcomes to guide and focus restoration efforts. The action evaluation procedure is a structured assessment of restoration actions. The procedure clearly describes actions to be evaluated, assesses the magnitude (importance and scale) and certainty of anticipated ecological outcomes, estimates degrees of worth (achieving intended outcomes) and risk (causing adverse consequences), evaluates the reversibility of the action, and identifies opportunities for learning. The values for worthiness, risk, reversibility, and learning opportunity are used in the decision-support tool to determine the fate of a proposed action. The decision-support tool is a structured decision tree that determines the disposition of an action: whether a restoration project should be discarded, revised with a different approach and re-evaluated, or implemented; and, if implemented, at what scale (targeted research, pilot project, or full implementation). The DRERIP approach provides managers with a valuable tool for restoration planning, and a foundation for integration with quantitative methods for a comprehensive ecosystem restoration plan.
Integrated Environmental Assessment and Management, 2015
Ecological risk assessment as currently practiced has hindered consideration of ecosystem services endpoints and restoration goals in the environmental management process. Practitioners have created barriers between procedures to clean up contaminated areas and efforts to restore ecosystem functions. In this paper we examine linkages between contaminant risk assessment approaches and restoration efforts with the aim of identifying ways to improve environmental outcomes. We advocate that project managers and other stakeholders use an ecological planning framework, with restoration options included upfront in the risk assessment. We also considered the opportunities to incorporate ecosystem services as potential assessment endpoints in the Problem Formulation stages of a risk assessment. Indeed diverse perspectives of stakeholders are central to understand the relevance of social, cultural, economic, and regional ecology as influences on future use options for the landscape being restored. The measurement endpoints used to characterize the existing ecological conditions for selected ecosystem services can also be used to evaluate restoration success. A regional/landscape/seascape focus is needed throughout the risk assessment process so that restoration efforts play a more prominent role in enhancing ecosystem services. In short, we suggest that practitioners begin with the question of "how can the ecological risk assessment inform the decision on how best to restore the ecosystem?" This article is protected by copyright. All rights reserved KEY WORDS: ecological planning framework, landscape perspective, valued ecological resources, ecosystem services Acc e p ted P r e p r i nt This article is protected by copyright. All rights reserved
Ecological Feasibility Studies in Restoration Decision Making
Environmental Management, 2007
The restoration of degraded systems is essential for maintaining the provision of valuable ecosystem services, including the maintenance of aesthetic values. However, restoration projects often fail to reach desired goals for a variety of ecologic, financial, and social reasons. Feasibility studies that evaluate whether a restoration effort should even be attempted can enhance restoration success by highlighting potential pitfalls and gaps in knowledge before the design phase of a restoration. Feasibility studies also can bring stakeholders together before a restoration project is designed to discuss potential disagreements. For these reasons, a feasibility study was conducted to evaluate the efficacy of restoring a tidal freshwater marsh in the Potomac River near Alexandria, Virginia. The study focused on science rather than engineering questions, and thus differed in approach from other feasibility studies that are mostly engineering driven. The authors report the framework they used to conduct a feasibility study to inform other potential restoration projects with similar goals. The seven steps of the framework encompass (1) initiation of a feasibility study, (2) compilation of existing data, (3) collection of current site information, (4) examination of case studies, (5) synthesis of information in a handbook, (6) meeting with selected stakeholders, and (7) evaluation of meeting outcomes. By conducting a feasibility study using the seven-step framework, the authors set the stage for conducting future compliance studies and enhancing the chance of a successful restoration.
A planning and decision-making framework for ecological restoration
Environmental management, 1995
A broad and objective perspective of ecological and socioeconomic knowledge is required to underlie a scientific approach to the problems of terrestrial restoration ecology. Uncertainty associated with limited scientific knowledge highlights the crucial importance of the interaction between science and policy in weighing ecological restoration alternatives in relation to other management options. In this paper, we provide a pragmatic definition for restoration ecology that is suitable for extensive terrestrial applications and present a decision framework to help organize and clarify different phases of the decision process as it is related to ecological restoration. We argue that restoration planning should include a wider spectrum of participants and decisions than have traditionally been employed.
Evidence‐based evaluation of the cumulative effects of ecosystem restoration
Ecosphere, 2016
This study adapts and applies the evidence-based approach for causal inference, a medical standard, to the restoration and sustainable management of large-scale aquatic ecosystems. Despite long-term investments in restoring aquatic ecosystems, it has proven difficult to adequately synthesize and evaluate program outcomes, and no standard method has been adopted. Complex linkages between restorative actions and ecosystem responses at a landscape scale make evaluations problematic and most programs focus on monitoring and analysis. Herein, we demonstrate a new transdisciplinary approach integrating techniques from evidence-based medicine, critical thinking, and cumulative effects assessment. Tiered hypotheses about the effects of landscape-scale restorative actions are identified using an ecosystem conceptual model. The systematic literature review, a health sciences standard since the 1960s, becomes just one of seven lines of evidence assessed collectively, using critical thinking strategies, causal criteria, and cumulative effects categories. As a demonstration, we analyzed data from 166 locations on the Columbia River and estuary representing 12 indicators of habitat and fish response to floodplain restoration actions intended to benefit culturally and economically important, threatened and endangered salmon. Synthesis of the lines of evidence demonstrated that hydrologic reconnection promoted macrodetritis export, prey availability, and juvenile fish access and feeding. Upon evaluation, the evidence was sufficient to infer cross-boundary, indirect, compounding, and delayed cumulative effects, and suggestive of nonlinear, landscape-scale, and spatial density effects. Therefore, on the basis of causal inferences regarding foodweb functions, we concluded that the restoration program is having a cumulative beneficial effect on juvenile salmon. The lines of evidence developed are transferable to other ecosystems: modeling of cumulative net ecosystem improvement, physical modeling of ecosystem controlling factors, meta-analysis of restoration action effectiveness, analysis of data on target species, research on critical ecological uncertainties, evidence-based review of the literature, and change analysis on the landscape setting. As with medicine, the science of ecological restoration needs scientific approaches to management decisions, particularly because the consequences affect species extinctions and the availability of ecosystem services. This evidencebased approach will enable restoration in complex coastal, riverine, and tidal-fluvial ecosystems like the lower Columbia River to be evaluated when data have accumulated without sufficient synthesis.
Evaluating the process of ecological restoration
We developed a conceptual framework for evaluating the process of ecological restoration and applied it to 10 examples of restoration projects in the northern hemisphere. We identified three major phases, planning, implementation, and monitoring, in the restoration process. We found that evaluation occurred both within and between the three phases, that it included both formal and informal components, and that it often had an impact on the performance of the projects. Most evaluations were short-term and only some parts of them were properly documented. Poor or short-term evaluation of the restoration process creates a risk that inefficient methods will continue to be used, which reduces the efficiency and effectiveness of restoration. To improve the restoration process and to transfer the knowledge to future projects, we argue for more formal, sustained evaluation procedures, involving all relevant stakeholders, and increased and improved documentation and dissemination of the results.
Restoration Ecology, 2012
This article demonstrates a structured and collaborative approach to decision-making in the context of adaptive management experiments, using a case study involving the restoration of a hydrological regime in a regulated river in western Canada. It provides a framework based on principles of decision analysis for structuring difficult multi-attribute decisions and building the trust and technical capacity needed to implement them. Participants included ecologists and fisheries biologists, government regulators, electric utility employees, and representatives of aboriginal communities. The case study demonstrates a values-based approach to implementing adaptive management that addresses some of the long-standing difficulties associated with integrating adaptive management into restoration decisions. It highlights practical methods for incorporating participants' values concerned with learning, cultural quality, and stewardship as part of developing a decision-making and monitoring framework for restoration initiatives. It also provides an example of how to implement principles of meaningful consultation in a restoration context, with emphasis on ensuring that all voices and concerns are heard and meaningfully incorporated. Participants have adopted the framework as a model to guide future collaborative decision-making processes involving Aboriginal communities, regulatory agencies, and other parties.
Decision support for integrated landscape evaluation and restoration planning
Forest Ecology and Management, 2005
The historical patterns of Inland Northwest United States forests have been dramatically altered by a little more than two centuries of human settlement and land use. Spatial patterns of forest structural conditions, tree species composition, snags and down wood, and temporal variation in these patterns, have been altered to such an extent that the natural ebb and flow of terrestrial habitats and their linkages has been disrupted. Closely coupled with these changes, fire and other disturbance processes in most dry and many mesic forest types have also shifted, with a bias for increased severity and extent. Here, in the context of planning restoration of some semblance of historical vegetation pattern-disturbance process interactions, we briefly revisit why it is theoretically sound to estimate the range and variation in historical forest spatial patterns. We call these estimates of range and variation, reference conditions or reference variation (RV), and discuss how forest managers might use them when evaluating current landscape patterns to identify changes that may have important ecological implications. We term such evaluations, departure analyses, and we describe how departure analysis is implemented in a decision support system (DSS) for integrated landscape evaluation and restoration planning. The initial phase of the DSS uses logic-based modeling to evaluate existing patterns of forest vegetation in subwatersheds of one ecoregion against a corresponding envelope of historical reference conditions for the same region, thereby highlighting key departures. The secondary planning phase uses results from the analysis phase in a decision model to prioritize watersheds for possible management actions related to landscape restoration and maintenance. We conclude from our example that there are at least two advantages to a decision-support approach that treats evaluation and planning as distinct but integrated phases: (1) the overall decision process is rendered conceptually simpler and (2) practical considerations of efficacy and feasibility of management actions can be easily accommodated. #