Role of FlgT in Anchoring the Flagellum of Vibrio cholerae (original) (raw)
Related papers
Journal of Bacteriology, 2010
In Vibrio alginolyticus, the flagellar motor can rotate at a remarkably high speed, ca. three to four times faster than the Escherichia coli or Salmonella motor. Here, we found a Vibrio-specific protein, FlgT, in the purified flagellar basal body fraction. Defects of FlgT resulted in partial Fla− and Mot− phenotypes, suggesting that FlgT is involved in formation of the flagellar structure and generating flagellar rotation. Electron microscopic observation of the basal body of ΔflgT cells revealed a smaller LP ring structure compared to the wild type, and most of the T ring was lost. His6-tagged FlgT could be coisolated with MotY, the T-ring component, suggesting that FlgT may interact with the T ring composed of MotX and MotY. From these lines of evidence, we conclude that FlgT associates with the basal body and is responsible to form an outer ring of the LP ring, named the H ring, which can be distinguished from the LP ring formed by FlgH and FlgI. Vibrio-specific structures, e.g.,...
A Novel Regulatory Protein Involved in Motility of Vibrio cholerae
Journal of Bacteriology, 2009
The facultative pathogen Vibrio cholerae is the causative agent of the human intestinal disease cholera. Both motility and chemotaxis of V. cholerae have been shown to contribute to the virulence and spread of cholera. The flagellar gene operons are organized into a hierarchy composed of four classes (I to IV) based on their temporal expression patterns. Some regulatory elements involved in flagellar gene expression have been elucidated, but regulation is complex and flagellar biogenesis in V. cholerae is not completely understood. In this study, we determined that the virulence defect of a V. cholerae cheW1 deletion mutant was due to polar effects on the downstream open reading frame VC2058 (flrD). Expression of flrD in trans restored the virulence defect of the cheW1 deletion mutant, and deletion of flrD resulted in a V. cholerae strain attenuated for virulence, as determined by using the infant mouse intestinal colonization model. The flrD mutant strain exhibited decreased transcription of class III and IV flagellar genes and reduced motility. Transcription of the flrD promoter, which lies within the coding sequence of cheW1, is independent of the flagellar transcriptional activators FlrA and RpoN, which activate class II genes, indicating that flrD does not fit into any of the four flagellar gene classes. Genetic epistasis studies revealed that the two-component system FlrBC, which is required for class III and IV flagellar gene transcription, acts downstream of flrD. We hypothesize that the inner membrane protein FlrD interacts with the cytoplasmic FlrBC complex to activate class III and IV gene transcription.
MicrobiologyOpen, 2015
The bacterial flagellar motor has a stator and a rotor. The stator is composed of two membrane proteins, MotA and MotB in Escherichia coli and PomA and PomB in Vibrio alginolyticus. The Vibrio motor has a unique structure, the T ring, which is composed of MotX and MotY. Based on the structural information of PomB and MotB, we constructed three chimeric proteins between PomB and MotB, named PotB91 , PotB129, and PotB138 , with various chimeric junctions. When those chimeric proteins were produced with PomA in a ΔmotAB strain of E. coli or in ΔpomAB and ΔpomAB ΔmotX strains of Vibrio, all chimeras were functional in E. coli or Vibrio, either with or without the T ring, although the motilities were very weak in E. coli. Furthermore, we could isolate some suppressors in E. coli and identified the mutation sites on PomA or the chimeric B subunit. The weak function of chimeric PotBs in E. coli is derived mainly from the defect in the rotational switching of the flagellar motor. In additio...
Microbiology-sgm, 2008
Precise regulation of the number and placement of flagella is critical for the mono-polar-flagellated bacterium Vibrio alginolyticus to swim efficiently. We have shown previously that the number of polar flagella is positively regulated by FlhF and negatively regulated by FlhG. We now show that DflhF cells are non-flagellated as are most DflhFG cells; however, some of the DflhFG cells have several flagella at lateral positions. We found that FlhF-GFP was localized at the flagellated pole, and its polar localization was seen more intensely in DflhFG cells. On the other hand, most of the FlhG-GFP was diffused throughout the cytoplasm, although some was localized at the pole. To investigate the FlhF-FlhG interaction, immunoprecipitation was performed by using an anti-FlhF antibody, and FlhG co-precipitated with FlhF. From these results we propose a model in which FlhF localization at the pole determines polar location and production of a flagellum, FlhG interacts with FlhF to prevent FlhF from localizing at the pole, and thus FlhG negatively regulates flagellar number in V. alginolyticus cells.
The Vibrio cholerae Flagellar Regulatory Hierarchy Controls Expression of Virulence Factors
Journal of Bacteriology, 2009
Vibrio cholerae is a motile bacterium responsible for the disease cholera, and motility has been hypothesized to be inversely regulated with virulence. We examined the transcription profiles of V. cholerae strains containing mutations in flagellar regulatory genes (rpoN, flrA, flrC, and fliA) by utilizing whole-genome microarrays. Results revealed that flagellar transcription is organized into a four-tiered hierarchy. Additionally, genes with proven or putative roles in virulence (e.g., ctx, tcp, hemolysin, and type VI secretion genes) were upregulated in flagellar regulatory mutants, which was confirmed by quantitative reverse transcription-PCR. Flagellar regulatory mutants exhibit increased hemolysis of human erythrocytes, which was due to increased transcription of the thermolabile hemolysin (tlh). The flagellar regulatory system positively regulates transcription of a diguanylate cyclase, CdgD, which in turn regulates transcription of a novel hemagglutinin (frhA) that mediates adherence to chitin and epithelial cells and enhances biofilm formation and intestinal colonization in infant mice. Our results demonstrate that the flagellar regulatory system modulates the expression of nonflagellar genes, with induction of an adhesin that facilitates colonization within the intestine and repression of virulence factors maximally induced following colonization. These results suggest that the flagellar regulatory hierarchy facilitates correct spatiotemporal expression patterns for optimal V. cholerae colonization and disease progression.
Journal of bacteriology, 2015
Rotation of the polar flagellum of Vibrio alginolyticus is driven by a Na(+)-type flagellar motor. FliG, one of the essential rotor proteins located at the upper rim of the C ring, binds to the membrane-embedded MS ring. The MS ring is composed of a single membrane protein, FliF, and serves as a foundation for flagellar assembly. Unexpectedly, about half of the Vibrio FliF protein produced at high levels in Escherichia coli was found in the soluble fraction. Soluble FliF purifies as an oligomer of ∼700 kDa, as judged by analytical size exclusion chromatography. By using fluorescence correlation spectroscopy, an interaction between a soluble FliF multimer and FliG was detected. This binding was weakened by a series of deletions at the C-terminal end of FliF and was nearly eliminated by a 24-residue deletion or a point mutation at a highly conserved tryptophan residue (W575). Mutations in FliF that caused a defect in FliF-FliG binding abolish flagellation and therefore confer a nonmot...
Structure, gene regulation and environmental response of flagella in Vibrio
Frontiers in microbiology, 2013
Vibrio species are Gram-negative, rod-shaped bacteria that live in aqueous environments. Several species, such as V. harveyi, V. alginotyticus, and V. splendidus, are associated with diseases in fish or shellfish. In addition, a few species, such as V. cholerae and V. parahaemolyticus, are risky for humans due to infections from eating raw shellfish infected with these bacteria or from exposure of wounds to the marine environment. Bacterial flagella are not essential to live in a culture medium. However, most Vibrio species are motile and have rotating flagella which allow them to move into favorable environments or to escape from unfavorable environments. This review summarizes recent studies about the flagellar structure, function, and regulation of Vibrio species, especially focused on the Na(+)-driven polar flagella that are principally responsible for motility and sensing the surrounding environment, and discusses the relationship between flagella and pathogenicity.
Novel conserved assembly factor of the bacterial flagellum
Journal of …, 2006
TP0658 (FliW) and its orthologs, conserved proteins of unknown function in Treponema pallidum and other species, interact with a C-terminal region of flagellin (FlaB1-3 in T. pallidum; FliC in most other species). Mutants of orthologs in Bacillus subtilis and Campylobacter jejuni (yviF, CJ1075) showed strongly reduced motility. TP0658 stabilizes flagellin in a way similar to FliS, suggesting that TP0658 is a conserved assembly factor for the bacterial flagellum.
Nature Communications, 2014
We show that Vibrio cholerae, the causative agent of cholera, use their flagella and mannosesensitive hemagglutinin (MSHA) type IV pili synergistically to switch between two complementary motility states that together facilitate surface selection and attachment. Flagellar rotation counter-rotates the cell body, causing MSHA pili to have periodic mechanical contact with the surface for surface-skimming cells. Using tracking algorithms at 5 ms resolution we observe two motility behaviours: 'roaming', characterized by meandering trajectories, and 'orbiting', characterized by repetitive high-curvature orbits. We develop a hydrodynamic model showing that these phenotypes result from a nonlinear relationship between trajectory shape and frictional forces between pili and the surface: strong pili-surface interactions generate orbiting motion, increasing the local bacterial loiter time. Time-lapse imaging reveals how only orbiting mode cells can attach irreversibly and form microcolonies. These observations suggest that MSHA pili are crucial for surface selection, irreversible attachment, and ultimately microcolony formation.