Helical membrane proteins: diversity of functions in the context of simple architecture (original) (raw)
Related papers
Sequence motifs, polar interactions and conformational changes in helical membrane proteins
Current Opinion in Structural Biology, 2003
The a helices of transmembrane proteins interact to form higher order structures. These interactions are frequently mediated by packing motifs (such as GxxxG) and polar residues. Recent structural data have revealed that small sidechains are able to both stabilize helical membrane proteins and allow conformational changes in the structure. The strong interactions involving polar sidechains often contribute to protein misfolding or malfunction.
Helical membrane protein conformations and their environment
European Biophysics Journal, 2013
Evidence that membrane proteins respond conformationally and functionally to their environment is growing. Structural models, by necessity, have been characterized in preparations where the protein has been removed from its native environment. Different structural methods have used various membrane mimetics that have recently included lipid bilayers as a more native-like environment. Structural tools applied to lipid bilayerembedded integral proteins are informing us about important generic characteristics of how membrane proteins respond to the lipid environment as compared with their response to other nonlipid environments. Here, we review the current status of the field, with specific reference to observations of some well-studied a-helical membrane proteins, as a starting point to aid the development of possible generic principles for model refinement.
Structural Determinants of Transmembrane Helical Proteins
Structure, 2009
We identify a structural feature of transmembrane helical proteins that restricts their conformational space and suggests a new way of understanding the construction and stability of their native states. We show that five kinds of well-known specific favorable interhelical interactions (hydrogen bonds, aromatic interactions, salt bridges, and two interactions from packing motifs) precisely determine the packing of the transmembrane helices in 15 diverse proteins. To show this, we iteratively reassemble the helix bundle of each protein using only these interactions, generic interaction geometries, and individual helix backbone conformations. On average, the representative set of rebuilt structures best satisfying the constraints imposed by the five types of interhelical interactions has an average Ca root-mean-square deviation from the native of 1.03 Å . Implications for protein folding, structure and motion prediction, modeling, and design are discussed.
Progress in structure prediction of α-helical membrane proteins
Current Opinion in Structural Biology, 2006
Transmembrane (TM) proteins comprise 20-30% of the genome but, because of experimental difficulties, they represent less than 1% of the Protein Data Bank. The dearth of membrane protein structures makes computational prediction a potentially important means of obtaining novel structures. Recent advances in computational methods have been combined with experimental data to constrain the modeling of three-dimensional structures. Furthermore, threading and ab initio modeling approaches that were effective for soluble proteins have been applied to TM domains. Surprisingly, experimental structures, proteomic analyses and bioinformatics have revealed unexpected architectures that counter long-held views on TM protein structure and stability. Future computational and experimental studies aimed at understanding the thermodynamic and evolutionary bases of these architectural details will greatly enhance predictive capabilities.
Progress in structure prediction of alpha-helical membrane proteins
Current opinion in structural biology, 2006
Transmembrane (TM) proteins comprise 20-30% of the genome but, because of experimental difficulties, they represent less than 1% of the Protein Data Bank. The dearth of membrane protein structures makes computational prediction a potentially important means of obtaining novel structures. Recent advances in computational methods have been combined with experimental data to constrain the modeling of three-dimensional structures. Furthermore, threading and ab initio modeling approaches that were effective for soluble proteins have been applied to TM domains. Surprisingly, experimental structures, proteomic analyses and bioinformatics have revealed unexpected architectures that counter long-held views on TM protein structure and stability. Future computational and experimental studies aimed at understanding the thermodynamic and evolutionary bases of these architectural details will greatly enhance predictive capabilities.
Structural features of transmembrane helices
FEBS Letters, 2004
A total of 160 transmembrane helices of 15 non-homologous high-resolution X-ray protein structures have been analyzed in respect of their structural features. The dihedral angles and hydrogen bonds of the helical sections that span the hydrophobic interior of the lipid bilayer have been investigated. The Ramachandran plot of protein channels and solute transporters exhibit a signi¢cant shift v v (P P-and i i-angles) of v v mean (+4.5 ‡ and 3 35.4 ‡), compared to a reference group of 151 K K-helices of the same average length derived from watersoluble globular proteins. At the C-termini of transmembrane helices structural motifs equivalent to the Gly-caps of helices in globular proteins have been found, with two third of the transmembrane Gly-caps taking up a primary structure that is typically not found at helix termini exposed to a polar solvent. The structural particularities reported here are relevant for the three-dimensional modelling of membrane protein structures. ß 2004 Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies.
Molecular Packing and Packing Defects in Helical Membrane Proteins
Biophysical Journal, 2005
The packing of helices spanning lipid bilayers is crucial for the stability and function of a-helical membrane proteins. Using a modified Voronoi procedure, we calculated packing densities for helix-helix contacts in membrane spanning domains. Our results show that the transmembrane helices of protein channels and transporters are significantly more loosely packed compared with helices in globular proteins. The observed packing deficiencies of these membrane proteins are also reflected by a higher amount of cavities at functionally important sites. The cavities positioned along the gated pores of membrane channels and transporters are noticeably lined by polar amino acids that should be exposed to the aqueous medium when the protein is in the open state. In contrast, nonpolar amino acids surround the cavities in those protein regions where large rearrangements are supposed to take place, as near the hinge regions of transporters or at restriction sites of protein channels. We presume that the observed deficiencies of helix-helix packing are essential for the helical mobility that sustains the function of many membrane protein channels and transporters.
Repositioning of transmembrane alpha-helices during membrane protein folding
Journal of molecular biology, 2010
We have determined the optimal placement of individual transmembrane helices in the Pyrococcus horikoshii GltPh glutamate transporter homolog in the membrane. The results are in close agreement with theoretical predictions based on hydrophobicity, but do not, in general, match the known three-dimensional structure, suggesting that transmembrane helices can be repositioned relative to the membrane during folding and oligomerization. Theoretical analysis of a database of membrane protein structures provides additional support for this idea. These observations raise new challenges for the structure prediction of membrane proteins and suggest that the classical two-stage model often used to describe membrane protein folding needs to be modified.