Design, synthesis, and structure-activity relationships of alkylcarbamic acid aryl esters, a new class of fatty acid amide hydrolase inhibitors (original) (raw)
Related papers
Journal of Medicinal Chemistry, 2008
Alkylcarbamic acid biphenyl-3-yl esters are a class of fatty acid amide hydrolase (FAAH) inhibitors that comprises cyclohexylcarbamic acid 3′-carbamoylbiphenyl-3-yl ester (URB597), a compound with analgesic, anxiolytic-like and antidepressant-like properties in rat and mouse models. Here, we extended the structure-activity relationships (SARs) for this class of compounds by replacing the cyclohexyl ring of the parent compound cyclohexylcarbamic acid biphenyl-3-yl ester (URB524) (FAAH IC 50 ) 63 nM) with a selected set of substituents of different size, shape, flexibility, and lipophilicity. Docking experiments and linear interaction energy (LIE) calculations indicated that the N-terminal group of O-arylcarbamates fits within the lipophilic region of the substrate-binding site, mimicking the arachidonoyl chain of anandamide. Significant potency improvements were observed for the -naphthylmethyl derivative 4q (IC 50 ) 5.3 nM) and its 3′-carbamoylbiphenyl-3-yl ester 4z (URB880, IC 50 ) 0.63 nM), indicating that shape complementarity and hydrogen bonds are crucial to obtain highly potent inhibitors.
Journal of Medicinal Chemistry, 2004
Fatty acid amide hydrolase (FAAH) is a promising target for modulating endocannabinoid and fatty acid ethanolamide signaling, which may have important therapeutic potential. We recently described a new class of O-arylcarbamate inhibitors of FAAH, including the cyclohexylcarbamic acid biphenyl-3-yl ester URB524 (half-maximal inhibitory concentration, IC 50 ) 63 nM), which have significant anxiolytic-like properties in rats. In the present study, by introducing a selected group of substituents at the meta and para positions of the distal phenyl ring of URB524, we have characterized structure-activity profiles for this series of compounds and shown that introduction of small polar groups in the meta position greatly improves inhibitory potency. Most potent in the series was the m-carbamoyl derivative URB597 (4i, IC 50 ) 4.6 nM). Furthermore, quantitative structure-activity relationship (QSAR) analysis of an extended set of meta-substituted derivatives revealed a negative correlation between potency and lipophilicity and suggested that small-sized substituents may undertake polar interactions with the binding pocket of the enzyme. Docking studies and molecular dynamics simulations, using the crystal structure of FAAH, indicated that the O-biphenyl scaffold of the carbamate inhibitors can be accommodated within a lipophilic region of the substrate-binding site, where their folded shape mimics the initial 10-12 carbon atoms of the arachidonyl moiety of anandamide (a natural FAAH substrate) and methyl arachidonyl fluorophosphonate (a nonselective FAAH inhibitor). Moreover, substituents at the meta position of the distal phenyl ring can form hydrogen bonds with atoms located on the polar section of a narrow channel pointing toward the membraneassociated side of the enzyme. The structure-activity characterization reported here should help optimize the pharmacodynamic and pharmacokinetic properties of this class of compounds.
ChemMedChem, 2009
The fatty acid ethanolamides are a class of signaling lipids that include agonists at cannabinoid and type-α peroxisome proliferator-activated receptors. In the brain, these compounds are primarily hydrolyzed by the intracellular serine enzyme fatty acid amide hydrolase (FAAH). Oaryl carbamate FAAH inhibitors such as URB597 are being evaluated clinically for the treatment of pain and anxiety, but interactions with carboxylesterases in liver might limit their usefulness. Here we explore two strategies aimed at overcoming this limitation. Lipophilic N-terminal substitutions, which enhance FAAH recognition, yield potent inhibitors but render such compounds both susceptible to attack by broad-spectrum hydrolases and inactive in vivo. By contrast, polar electron-donating O-aryl substituents, which decrease carbamate reactivity, yield compounds, such as URB694, that are highly potent FAAH inhibitors in vivo and less reactive with off-target carboxylesterases. The results suggest that an approach balancing inhibitor reactivity with target recognition produces FAAH inhibitors that display significantly improved drug-likeness.
Journal of Medicinal Chemistry, 2013
The peripherally restricted fatty acid amide hydrolase (FAAH) inhibitor URB937 (3, cyclohexylcarbamic acid 3'-carbamoyl-6-hydroxybiphenyl-3-yl ester) is extruded from the brain and spinal cord by the Abcg2 efflux transporter. Despite its inability to enter the central nervous system (CNS), 3 exerts profound antinociceptive effects in mice and rats, which result from the inhibition of FAAH in peripheral tissues and the consequent enhancement of anandamide signaling at CB 1 cannabinoid receptors localized on sensory nerve endings. In the present study, we examined the structure-activity relationships (SAR) for the biphenyl region of compound 3, focusing on the carbamoyl and hydroxyl groups in the distal and proximal phenyl rings. Our SAR studies generated a new series of peripherally restricted FAAH inhibitors and identified compound 35 (cyclohexylcarbamic acid 3'-carbamoyl-5-hydroxybiphenyl-3-yl ester) as the most potent brain-impermeant FAAH inhibitor disclosed to date.
Synthesis and evaluation of paracetamol esters as novel fatty acid amide hydrolase inhibitors
Journal of medicinal chemistry, 2010
Fatty acid amide hydrolase (FAAH) is the key hydrolytic enzyme for the endogenous cannabinoid receptor ligand anandamide. The synthesis and evaluation for their FAAH inhibitory activities of a series of 18 paracetamol esters are described. Structure-activity relationship studies indicated that the ester (33) with a 2-(4-(2-(trifluoromethyl)pyridin-4-ylamino)phenyl)acetic acid substituent was the most potent analogue in this series. The compound inhibited FAAH activity in a competitive manner with a K i value of 0.16 μM. The compound was also able to inhibit the FAAH activity in rat basophilic leukemia cells as assessed by measuring either the hydrolysis of anandamide, the FAAH-dependent cellular accumulation of anandamide, or the FAAH-dependent recycling of tritium to the cell membranes. The compound also inhibited the activity of monoacylglycerol lipase (MGL), the enzyme responsible for the hydrolysis of the endogenous cannabinoid receptor ligand 2-arachidonoylglycerol, with an IC 50 value of 1.9 μM. It is concluded that the compound may be a useful template for the design of potent novel inhibitors of FAAH.
ChemMedChem, 2018
The unique role of fatty acid amide hydrolase (FAAH) in terminating endocannabinoid (EC) signaling supports its relevance as a therapeutic target. Inhibition of EC metabolizing enzymes elicits indirect agonism of cannabinoid receptors (CBRs) and therapeutic efficacy devoid of psychotropic effects. Based on our previous ligands, and aiming at the discovery of new selective FAAH inhibitors, we developed a series of 12 new compounds characterized by functionalized tricyclic scaffolds. All the developed compounds display negligible activity on monoacylglycerol lipase (MAGL) and CBRs. The most potent FAAH inhibitors of the newly developed series, 6-oxo-5,6-dihydro-4H-benzo[f]pyrrolo[1,2-a][1,4]diazepin-9-yl-6-phenylhexylcarbamate (5 h) and 4-oxo-5,6-dihydro-4H-benzo[f]pyrrolo[1,2-a][1,4]diazepin-9-yl-(6-phenylhexyl)carbamate (5 i) (nanomolar FAAH inhibitors, the latter of which also shows micromolar affinity at the CB R), were selected for further studies. Results of cell-based studies o...
Novel propanamides as fatty acid amide hydrolase inhibitors
European journal of medicinal chemistry, 2017
Fatty acid amide hydrolase (FAAH) has a key role in the control of the cannabinoid signaling, through the hydrolysis of the endocannabinoids anandamide and in some tissues 2-arachidonoylglycerol. FAAH inhibition represents a promising strategy to activate the cannabinoid system, since it does not result in the psychotropic and peripheral side effects characterizing the agonists of the cannabinoid receptors. Here we present the discovery of a novel class of profen derivatives, the N-(heteroaryl)-2-(4-((2-(trifluoromethyl)pyridin-4-yl)amino)phenyl)propanamides, as FAAH inhibitors. Enzymatic assays showed potencies toward FAAH ranging from nanomolar to micromolar range, and the most compounds lack activity toward the two isoforms of cyclooxygenase. Extensive structure-activity studies and the definition of the binding mode for the lead compound of the series are also presented. Kinetic assays in rat and mouse FAAH on selected compounds of the series demonstrated that slight modificatio...
Journal of Medicinal Chemistry, 2007
Fatty acid amide hydrolase (FAAH) is an intracellular serine hydrolase, which catalyzes the hydrolysis of the endocannabinoid N-arachidonoylethanolamide to arachidonic acid and ethanolamine. FAAH also hydrolyzes another endocannabinoid, 2-arachidonoylglycerol (2-AG). However, 2-AG has been assumed to be hydrolyzed mainly by monoacylglycerol lipase (MAGL) or a MAGL-like enzyme. Inhibition of FAAH or MAGL activity might lead to beneficial effects in many physiological disorders such as pain, inflammation, and anxiety due to increased endocannabinoid-induced activation of cannabinoid receptors CB1 and CB2. In the present study, a total of 34 novel compounds were designed, synthesized, characterized, and tested against FAAH and MAGL-like enzyme activity. Altogether, 16 compounds were found to inhibit FAAH with half-maximal inhibition concentrations (IC 50 ) between 28 and 380 nM. All the active compounds belong to the structural family of carbamates. Compounds 14 and 18 were found to be the most potent FAAH inhibitors, which may serve as lead structures for novel FAAH inhibitors.
Journal of medicinal chemistry, 2007
A study of the structure-activity relationships (SAR) of 2f (OL-135), a potent inhibitor of fatty acid amide hydrolase (FAAH), is detailed, targeting the 5-position of the oxazole. Examination of a series of substituted benzene derivatives (12-14) revealed that the optimal position for substitution was the meta-position with selected members approaching or exceeding the potency of 2f. Concurrent with these studies, the effect of substitution on the pyridine ring of 2f was also examined. A series of small, nonaromatic C5-substituents was also explored and revealed that the K(i) follows a well-defined correlation with the Hammett sigma(p) constant (rho = 3.01, R2 = 0.91) in which electron-withdrawing substituents enhance potency, leading to inhibitors with K(i)s as low as 400 pM (20n). Proteomic-wide screening of the inhibitors revealed that most are exquisitely selective for FAAH over all other mammalian proteases, reversing the 100-fold preference of 20a (C5 substituent = H) for the...