Binding of indocyanine green in polycaprolactone fibers using blend electrospinning for in vivo laser-assisted vascular anastomosis (original) (raw)
Lasers in Surgery and Medicine
Abstract
The clinical application of laser-assisted vascular anastomosis is afflicted by unreliable and low bonding strengths as well as tedious handling during microvascular surgery. The challenge to be met arises from the flow-off of the chromophore during soldering that changes the absorption and stains the surrounding tissue, leading to an uncontrollable thermal damage zone. In this study, we investigated the feasibility to produce an indocyanine green (ICG)-loaded patch by electrospinning and tested its applicability to both in vitro and in vivo microvascular laser soldering. A blend of polycaprolactone and ICG was electrospun to produce a pliable patch. Prior to soldering, the patch was soaked in 40% wt. bovine serum albumin solution. The solder patch was wrapped in vitro around blood vessel stumps of rabbit aortas. An intraluminal balloon catheter enabled an easy alignment and held the setup in place. The soldering energy was delivered via a diffusor fiber from the vessel lumen using a diode laser at 810 nm. During the procedure, the surface temperature was observed with an infrared camera. Afterward, samples were embedded in methylmethacrylate and epon to study thermal damage. The quality of the fusion was assessed by measuring the tensile strength. After in vitro tests with rabbit aortas, eight large white pigs were subjected to an acute in vivo experiment, and the artery of the latissimus dorsi flap was anastomosed to the distal femoral artery. The ICG-loaded patch, produced by electrospinning, has a thickness of 279 ± 62 μm, a fiber diameter of 1.20 ± 0.19 μm, and an attenuation coefficient of 1,119 ± 183 cm(-1) at a wavelength of 790 nm. The patch was pliable and easy to handle during surgery. No leakage of the chromophore was observed. Thermal damage was restricted to the Tunica adventitia and Tunica media and the area of the vessel wall that was covered with the patch. Six pigs were successfully treated, without any bleeding and with a continuous blood flow. The in vivo flap model yielded a similar tensile strength compared to in vitro laser-assisted vascular anastomoses (138 ± 52 vs. 117 ± 30 mN/mm(2) ). Our study demonstrated the applicability of the ICG-loaded patch for laser-assisted vascular anastomosis. By using electrospinning, ICG could be bound to polymer fibers, avoiding its flow-off and the staining of the surrounding tissue. This patch demonstrated several advantages over liquid solder as it was easier to apply, ensured a high and reliable bonding strength while maintaining a constant concentration of ICG concentration during the surgery. Lasers Surg. Med. © 2017 Wiley Periodicals, Inc.
Michael H. Stoffel hasn't uploaded this paper.
Let Michael H. know you want this paper to be uploaded.
Ask for this paper to be uploaded.