Modified Titanium Dioxide for Photocatalytic Applications (original) (raw)
Photocatalysts - Applications and Attributes [Working Title]
Titanium dioxide (TiO 2 ) has been widely used as a photocatalyst in many environmental and energy applications due to its efficient photoactivity, high stability, low cost, and safety to the environment and humans. However, its large band gap energy, ca. 3.2 eV limits its absorption of solar radiation to the UV light range which accounts for only about 5% of the solar spectrum. Furthermore, the photocatalytic activity of TiO 2 is also limited by the rapid recombination of the photogenerated electron-hole pairs. When used in water treatment applications, TiO 2 has a poor affinity toward organic pollutants, especially hydrophobic organic pollutants. Several strategies have been employed to reduce its band gap energy, its electron-hole recombination rates as well as enhance its absorption of organic pollutants. In this chapter, we review some of the most recent works that have employed the doping, decoration, and structural modification of TiO 2 particles for applications in photocatalysis. Additionally, we discuss the effectiveness of these dopants and/or modifiers in enhancing TiO 2 photoactivity as well as some perspective on the future of TiO 2 photocatalysis.