Gaia relativistic astrometric models (original) (raw)
Related papers
The high accuracy of modern space astrometry requires the use of General Relativity to model the propagation of stellar light through the gravitational field encountered from a source to a given observer inside the Solar System. In this sense relativistic astrometry is part of fundamental physics. The general relativistic definition of astrometric measurement needs an appropriate use of the concept of reference frame, which should then be linked to the conventions of the IAU Resolutions (2000), which fix the celestial coordinate system. A consistent definition of the astrometric observables in the context of General Relativity is also essential to find uniquely the stellar coordinates and proper motion, this being the main physical task of the inverse ray tracing problem. Aim of this work is to set the level of reciprocal consistency of two relativistic models, GREM and RAMOD (Gaia, ESA mission), in order to garantee a physically correct definition of light direction to a star, an e...
The high accuracy of modern space astrometry requires the use of General Relativity to model the propagation of stellar light through the gravitational field encountered from a source to a given observer inside the Solar System. In this sense relativistic astrometry is part of fundamental physics. The general relativistic definition of astrometric measurement needs an appropriate use of the concept of reference frame, which should then be linked to the conventions of the IAU Resolutions (2000), which fix the celestial coordinate system. A consistent definition of the astrometric observables in the context of General Relativity is also essential to find uniquely the stellar coordinates and proper motion, this being the main physical task of the inverse ray tracing problem. Aim of this work is to set the level of reciprocal consistency of two relativistic models, GREM and RAMOD (Gaia, ESA mission), in order to garantee a physically correct definition of light direction to a star, an e...
Physical Review D
With the launch of the Gaia mission, general relativity (GR) is now at the very core of astrometry. Given the high level of accuracy of the measurements, the development of a suitable relativistic model for carrying out the correct data processing and analysis has become a critical necessity; its primary goal is to have a consistent set of stellar astrometric parameters by which to map a relativistic kinematic of a large portion of the Milky Way and, therefore, taking the first step of the cosmic distance ladder to higher accuracy. To trace light trajectories back to the emitting stars requires an appropriate treatment of local gravity and a relativistic definition of the observable, according to the measurement protocol of GR, so that astrometry cannot be set apart from fundamental physics. Consequently, the final Gaia outputs, following completion of its operational life, will have important new implications and an overwhelming potential for astrophysical phenomena requiring the highest precision. In this regard, the present work establishes the background GR procedure to treat such relativistic measurements from within the weak gravitational field of the Solar System. In particular, we make the method explicit in the framework of the RAMOD relativistic models, consistent with the IAU (standard) resolutions and, therefore, suitable for validating the GREM approach baselined for Gaia.
The ray tracing analytical solution within the RAMOD framework. The case of a Gaia-like observer
Classical and Quantum Gravity, 2015
This paper presents the analytical solution of the inverse ray tracing problem for photons emitted by a star and collected by an observer located in the gravitational field of the Solar System. This solution has been conceived to suit the accuracy achievable by the ESA Gaia satellite (launched on December 19, 2013) consistently with the measurement protocol in General relativity adopted within the RAMOD framework. Aim of this study is to provide a general relativistic tool for the science exploitation of such a revolutionary mission, whose main goal is to trace back star directions from within our local curved space-time, therefore providing a three-dimensional map of our Galaxy. The results are useful for a thorough comparison and cross-checking validation of what already exists in the field of Relativistic Astrometry. Moreover, the analytical solutions presented here can be extended to model other measurements that require the same order of accuracy expected for Gaia.
Proper stellar directions and astronomical aberration
Proceedings of the International Astronomical Union, 2009
The general relativistic definition of astrometric measurement needs an appropriate use of the concept of reference frame, which should then be linked to the conventions of the IAU Resolutions (Soffel et al., 2003), which fix the celestial coordinate system. A consistent definition of the astrometric observables in the context of General Relativity is also essential to find uniquely the stellar coordinates and proper motion, this being the main physical task of the inverse ray tracing problem. Aim of this work is to set the level of reciprocal consistency of two relativistic models, GREM and RAMOD (Gaia, ESA mission), in order to guarantee a physically correct definition of light direction to a star, an essential item for deducing the star coordinates and proper motion within the same level of measurement accuracy.
Some Aspects of Relativistic Astrometry from Within the Solar System
Celestial Mechanics & Dynamical Astronomy, 2003
In this article we outline the structure of a general relativistic astrometric model which has been developed to deduce the position and proper motion of stars from 1 µarcsecond optical observations made by an astrometric satellite orbiting around the Sun. The basic assumption of our model is that the Solar System is the only source of gravity, hence we show how we modeled the satellite observations in a many-body perturbative approach limiting ourselves to the order of accuracy of (v/c)2. The microarcsecond observing scenario outlined is that for the GAIA astrometric mission.
General relativistic satellite astrometry: II. Modeling parallax and proper motion
Astronomy & Astrophysics, 2001
The non-perturbative general relativistic approach to global astrometry introduced by de Felice et al. (1998) is here extended to account for the star motions on the Schwarzschild celestial sphere. A new expression of the observables, i.e. angular distances among stars, is provided, which takes into account the effects of parallax and proper motions. This dynamical model is then tested on an end-to-end simulation of the global astrometry mission GAIA. The results confirm the findings of our earlier work, which applied to the case of a static (angular coordinates only) sphere. In particular, measurements of large arcs among stars (each measurement good to ∼100 µarcsec, as expected for V ∼ 17 mag stars) repeated over an observing period comparable to the mission lifetime foreseen for GAIA, can be modeled to yield estimates of positions, parallaxes, and annual proper motions good to ∼15 µarcsec. This second round of experiments confirms, within the limitations of the simulation and the assumptions of the current relativistic model, that the space-born global astrometry initiated with Hipparcos can be pushed down to the 10 −5 arcsec accuracy level proposed with the GAIA mission. Finally, the simplified case we have solved can be used as reference for testing the limiting behavior of more realistic models as they become available.
Astrometric tests of General Relativity in the Solar system
Journal of Physics: Conference Series, 2014
We review the mathematical models available for relativistic astrometry, discussing the different approaches and their accuracies in the context of the modern experiments from space like Gaia and GAME, and we show how these models can be applied to the real world, and their consequences from the mathematical and numerical point of view, with specific reference to the case of Gaia, whose launch is due before the end of the year.
Journal of Physics: Conference Series, 2014
We review the mathematical models available for relativistic astrometry, discussing the different approaches and their accuracies in the context of the modern experiments from space like Gaia and GAME, and we show how these models can be applied to the real world, and their consequences from the mathematical and numerical point of view, with specific reference to the case of Gaia, whose launch is due before the end of the year.
Theory of Relativistic-Reference Frames for High-Precision Astrometric Space Misions
Reference Frames and Gravitomagnetism, 2001
Recent modern space missions deliver invaluable information about origin of our universe, physical processes in the vicinity of black holes and other exotic astrophysical objects, stellar dynamics of our galaxy, etc. On the other hand, space astrometric missions make it possible to determine with unparalleled precision distances to stars and cosmological objects as well as their physical characteristics and positions on the celestial sphere. Permanently growing accuracy of space astronomical observations and the urgent need for adequate data processing algorithms require corresponding development of an adequate theory of reference frames along with unambiguous description of propagation of light rays from a source of light to observer. Such a theory must be based on the Einstein's general relativity and account for numerous relativistic effects both in the solar system and outside of its boundary. The main features of the relativistic theory of reference frames are presented in this work. A hierarchy of the frames is described starting from the perturbed cosmological Friedmann-Robertson-Walker metric and going to the observer's frame through the intermediate barycentric and geocentric frames in the solar system. Microarcsecond astrometry and effects of propagation of light rays in time-dependent gravitational fields are discussed as well.