Noninvasive Dissection of Mouse Sleep Using a Piezoelectric Motion Sensor (original) (raw)
Noninvasive three-state sleep-wake staging in mice using electric field sensors
Journal of Neuroscience Methods, 2020
Study Objective: Validate a novel method for sleep-wake staging in mice using noninvasive electric field (EF) sensors. Methods: Mice were implanted with electroencephalogram (EEG) and electromyogram (EMG) electrodes and housed individually. Noninvasive EF sensors were attached to the exterior of each chamber to record respiration and other movement simultaneously with EEG, EMG, and video. A sleep-wake scoring method based on EF sensor data was developed with reference to EEG/EMG and then validated by three expert scorers. Additionally, novice scorers without sleep-wake scoring experience were self-trained to score sleep using only the EF sensor data, and results were compared to those from expert scorers. Lastly, ability to capture three-state sleep-wake staging with EF sensors attached to traditional mouse home-cages was tested. Results: EF sensors quantified wake, rapid eye movement (REM) sleep, and non-REM sleep with high agreement (>93%) and comparable inter-and intra-scorer error as EEG/EMG. Novice scorers successfully learned sleep-wake scoring using only EF sensor data and scoring criteria, and *
Non-invasive sleep analysis with intelligent sensors
2019
Sleep study can be used for detection of sleep quality and in general bed behaviors. These results can helpful for regulating sleep and recognizing different sleeping disorders of human. In comparison to the leading standard measuring system, which is Polysomnography (PSG), the system proposed in this work is a non-invasive sleep monitoring device. For continuous analysis or home use, the PSG or wearable Actigraphy devices tends to be uncomfortable. Besides, these methods not only decrease practicality due to the process of having to put them on, but they are also very expensive. The system proposed in this paper classifies respiration and body movement with only one type of sensor and also in a noninvasive way. The sensor used is a pressure sensor. This sensor is low cost and can be used for commercial proposes. The system was tested by carrying out an experiment that recorded the sleep process of a subject. These recordings showed excellent results in the classification of breathi...
Sleep stages classification using cardio-respiratory variables
2020
Analysis of sleep is important in order to detect health issues and try to prevent them. In particular, sleep dysfunctions may be the first signs of cognitive frailties for elderly persons. The polysomnography (PSG) is considered the golden standard to perform a comprehensive sleep analysis, as it is based on several sensors placements. However, for longitudinal study of sleep that is required to prevent frailty for elderly persons, such medical equipment is not suitable since it is very invasive. Recent technological advances in sensors allow to gather data with a good precision with less intrusive equipment. The main objective of this study consists in developing a new algorithmic approach to analyse sleep using data from low intrusive sensors. In this study we focus on sleep phase detection, i.e. wake, Non-Rapid Eye Movement (NREM) and Rapid Eye Movement (REM). We consider the following sources of data: heart beat rate, as well as user data such as gender, age, etc. The problem i...
Predictability of arousal in mouse slow wave sleep by accelerometer data
Arousals can be roughly characterized by punctual intrusions of wakefulness into sleep. In a standard perspective, using human electroencephalography (EEG) data, arousals are associated to slow-wave rhythms and K-complex brain activity. The physiological mechanisms that give rise to arousals during sleep are not yet fully understood. Moreover, subtle body movement patterns, which may characterize arousals both in human and in animals, are usually not detectable by eye perception and are not in general present in sleep studies. In this paper, we focus attention on accelerometer records (AR) to characterize and predict arousal during slow wave sleep (SWS) stage of mice. Furthermore, we recorded the local field potentials (LFP) from the CA1 region in the hippocampus and paired with accelerome-ter data. The hippocampus signal was also used here to identify the SWS stage. We analyzed the AR dynamics of consecutive arousals using recurrence technique and the determinism (DET) quantifier. Recurrence is a fundamental property of dynamical systems, which can be exploited to characterize time series properties. The DET index evaluates how similar are the evolution of close trajectories: in this sense, it computes how accurate are predictions based on past trajectories. For all analyzed mice in this work, we observed, for the first time, the occurrence of a universal dynamic pattern a few seconds that precedes the arousals during SWS sleep stage based only on the AR signal. The predictability success of an arousal using DET from AR is nearly 90%, while similar analysis using LFP of hip-pocampus brain region reveal 88% of success. Noteworthy, our findings suggest an unique dynamical behavior pattern preceding an arousal of AR data during sleep. Thus, the employment of this technique applied to AR data may provide useful information about the dynamics of neuronal activities that control sleep-waking switch during SWS sleep period. We argue that the predictability of arousals observed through DET(AR) can be functionally explained by a respiratory-driven modification of neural states. Finally, we believe that the PLOS ONE | https://doi.
Manual rat sleep classification in principal component space
Neuroscience Letters, 2010
A simple method is described for using principal component analysis (PCA) to score rat sleep recordings as awake, rapid-eye-movement (REM) sleep, or non-REM (NREM) sleep. PCA was used to reduce the dimensionality of the features extracted from each epoch to three, and the projections were then graphed in a scatterplot where the clusters were visually apparent. The clusters were then directly manually selected, classifying the entire recording at once. The method was tested in a set of ten 24-hour rat sleep electroencephalogram (EEG) and electromyogram (EMG) recordings. Classifications by two human raters performing traditional epoch-by-epoch scoring were blindly compared with classifications by another two human raters using the new PCA method. Overall interrater median percent agreements ranged between 93.7% and 94.9%. Median Cohen's kappa coefficient ranged from 0.890 to 0.909. The PCA method on average required about five minutes for classification of each 24-hour recording. The combination of good accuracy and reduced time compared to traditional sleep scoring suggests that the method may be useful for sleep research.
Automatic detection of sleep macrostructure based on bed sensors
Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference, 2009
This study analyses the spectral components of the heart rate fluctuations of a new contact-less technology for sleep evaluation. Both heart beat interval (HBI) and movement activity were extracted from the multichannel ballistocardiographic (BCG) measurements, based on Emfit sensor foils placed into bed mattress. Powers spectral densities (PSD) of HBI have been compared with the ones obtained from the standard ECG during sleep stage 2. In addition, spectral features obtained from the contact-less technology and standard ECG has been used to automatically classify the sleep macrostructure through a time-varying autoregressive model and a Hidden Markov Model. Whole night recordings from six subjects were analyzed in this study. Spectral components did not show significant differences between the two measurements. Further, contactless technology achieved a total accuracy of 83 % and kappa index of 0.42, while standard ECG achieved an accuracy of 84 % and kappa index of 0.43 when compa...
Sleep Stage Classification by a Combination of Actigraphic and Heart Rate Signals
Journal of Low Power Electronics and Applications, 2017
Although heart rate variability and actigraphic data have been used for sleep-wake or sleep stage classifications, there are few studies on the combined use of them. Recent wearable sensors, however, equip both pulse wave and actigraphic sensors. This paper presents results on the performance of sleep stage classification by a combination of heart rate and actigraphic signals. We studied 40,643 epochs (length 3 min) of polysomnographic data in 289 subjects. A combined model, consisting of autonomic functional indices from heart rate variability and body movement indices derived from actigraphic data, discriminated non-rapid-eye-movement (REM) sleep from waking/REM sleep with 76.9% sensitivity, 74.5% specificity, 75.8% accuracy, and a Cohen's kappa of 0.514. The combination was also useful for discriminating between REM sleep and waking at 77.2% sensitivity, 72.3% specificity, 74.5% accuracy, and a kappa of 0.491.
Physiological Measurement, 2007
Scoring of REM sleep based on polysomnographic recordings is a laborious and time-consuming process. The growing number of ambulatory devices designed for cost-effective home-based diagnostic sleep recordings necessitates the development of a reliable automatic REM sleep detection algorithm that is not based on the traditional electroencephalographic, electrooccolographic and electromyographic recordings trio. This paper presents an automatic REM detection algorithm based on the peripheral arterial tone (PAT) signal and actigraphy which are recorded with an ambulatory wrist-worn device (Watch-PAT100). The PAT signal is a measure of the pulsatile volume changes at the finger tip reflecting sympathetic tone variations. The algorithm was developed using a training set of 30 patients recorded simultaneously with polysomnography and Watch-PAT100. Sleep records were divided into 5 min intervals and two time series were constructed from the PAT amplitudes and PAT-derived inter-pulse periods in each interval. A prediction function based on 16 features extracted from the above time series that determines the likelihood of detecting a REM epoch was developed. The coefficients of the prediction function were determined using a genetic algorithm (GA) optimizing process tuned to maximize a price function depending on the sensitivity, specificity and agreement of the algorithm in comparison with the gold standard of polysomnographic manual scoring. Based on a separate validation set of 30 patients overall sensitivity, specificity and agreement of the automatic algorithm to identify standard 30 s epochs of REM sleep were 78%, 92%, 89%, respectively. Deploying this REM detection algorithm in a wrist worn device could be very useful for unattended ambulatory sleep monitoring. The innovative method of optimization using a genetic algorithm has been proven to yield robust results in the validation set.