Noninvasive Dissection of Mouse Sleep Using a Piezoelectric Motion Sensor (original) (raw)
Related papers
IEEE Transactions on Biomedical Engineering, 2000
Current research on sleep using experimental animals is limited by the expense and time-consuming nature of traditional EEG/EMG recordings. We present here an alternative, noninvasive approach utilizing piezoelectric films configured as highly sensitive motion detectors. These film strips attached to the floor of the rodent cage produce an electrical output in direct proportion to the distortion of the material. During sleep, movement associated with breathing is the predominant gross body movement and, thus, output from the piezoelectric transducer provided an accurate respiratory trace during sleep. During wake, respiratory movements are masked by other motor activities. An automatic pattern recognition system was developed to identify periods of sleep and wake using the piezoelectric generated signal. Due to the complex and highly variable waveforms that result from subtle postural adjustments in the animals, traditional signal analysis techniques were not sufficient for accurate classification of sleep versus wake. Therefore, a novel pattern recognition algorithm was developed that successfully distinguished sleep from wake in approximately 95% of all epochs. This algorithm may have general utility for a variety of signals in biomedical and engineering applications. This automated system for monitoring sleep is noninvasive, inexpensive, and may be useful for large-scale sleep studies including genetic approaches towards understanding Manuscript
SLEEP, 2014
Traditionally, sleep studies in mammals are performed using electroencephalogram/electromyogram (EEG/EMG) recordings to determine sleep-wake state. In laboratory animals, this requires surgery and recovery time and causes discomfort to the animal. In this study, we evaluated the performance of an alternative, noninvasive approach utilizing piezoelectric films to determine sleep and wakefulness in mice by simultaneous EEG/EMG recordings. The piezoelectric films detect the animal's movements with high sensitivity and the regularity of the piezo output signal, related to the regular breathing movements characteristic of sleep, serves to automatically determine sleep. Although the system is commercially available (Signal Solutions LLC, Lexington, KY), this is the first statistical validation of various aspects of sleep. Design: EEG/EMG and piezo signals were recorded simultaneously during 48 h. Setting: Mouse sleep laboratory. Participants: Nine male and nine female CFW outbred mice. Interventions: EEG/EMG surgery.
Sleep stages classification using cardio-respiratory variables
2020
Analysis of sleep is important in order to detect health issues and try to prevent them. In particular, sleep dysfunctions may be the first signs of cognitive frailties for elderly persons. The polysomnography (PSG) is considered the golden standard to perform a comprehensive sleep analysis, as it is based on several sensors placements. However, for longitudinal study of sleep that is required to prevent frailty for elderly persons, such medical equipment is not suitable since it is very invasive. Recent technological advances in sensors allow to gather data with a good precision with less intrusive equipment. The main objective of this study consists in developing a new algorithmic approach to analyse sleep using data from low intrusive sensors. In this study we focus on sleep phase detection, i.e. wake, Non-Rapid Eye Movement (NREM) and Rapid Eye Movement (REM). We consider the following sources of data: heart beat rate, as well as user data such as gender, age, etc. The problem i...
BioMedical Engineering OnLine, 2008
This work presents a non-invasive high-throughput system for automatically detecting characteristic behaviours in mice over extended periods of time, useful for phenotyping experiments. The system classifies time intervals on the order of 2 to 4 seconds as corresponding to motions consistent with either active wake or inactivity associated with sleep. A single Polyvinylidine Difluoride (PVDF) sensor on the cage floor generates signals from motion resulting in pressure. This paper develops a linear classifier based on robust features extracted from normalized power spectra and autocorrelation functions, as well as novel features from the collapsed average (autocorrelation of complex spectrum), which characterize transient and periodic properties of the signal envelope. Performance is analyzed through an experiment comparing results from direct human observation and classification of the different behaviours with an automatic classifier used in conjunction with this system. Experimental results from over 28.5 hours of data from 4 mice indicate a 94% classification rate relative to the human observations. Examples of sequential classifications (2 second increments) over transition regions between sleep and wake behaviour are also presented to demonstrate robust performance to signal variation and explain performance limitations.
Sleep Medicine Reviews, 2021
This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Respiration amplitude analysis for REM and NREM sleep classification
Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society
In previous work, single-night polysomnography recordings (PSG) of respiratory effort and electrocardiogram (ECG) signals combined with actigraphy were used to classify sleep and wake states. In this study, we aim at classifying rapid eye-movement (REM) and non-REM (NREM) sleep states. Besides the existing features used for sleep and wake classification, we propose a set of new features based on respiration amplitude. This choice is motivated by the observation that the breathing pattern has a more regular amplitude during NREM sleep than during REM sleep. Experiments were conducted with a data set of 14 healthy subjects using a linear discriminant (LD) classifier. Leave-one-subject-out cross-validations show that adding the new features into the existing feature set results in an increase in Cohen’s Kappa coefficient to a value of = 0.59 (overall accuracy of 87.6%) compared to that obtained without using these features ( of 0.54 and overall accuracy of 86.4%). In addition, we compared the results to those reported in some other studies with different features and signal modalities.
BackgroundAssessment of sleep/wake by electroencephalography (EEG) and electromyography (EMG) is invasive, resource intensive, and not amenable to rapid screening at scale for drug discovery. In the preclinical development of therapeutics for narcolepsy, efficacy tests are hindered by the lack of a non-EEG/EMG based translational test of symptom severity. The current methods study offers proof-of-principle that PiezoSleep (noninvasive, unsupervised piezoelectric monitoring of gross body movement, together with respiration patterns during behavioral quiescence), can be used to determine sleep/wake as applicable to the development of wake-promoting therapeutics. First, the translational wake-maintenance score (WMS, the ratio of time during the first half of the dark period spent in long wake bouts to short sleep bouts) of the PiezoSleep narcolepsy screen was introduced as a means by which to rank narcoleptic orexin/ataxin-3 mice and wild type mice by sleep/wake fragmentation severity....
bioRxiv (Cold Spring Harbor Laboratory), 2020
The temporal distribution of sleep stages is critical for the study of sleep function, regulation, and disorders in higher vertebrates. This temporal distribution is typically determined polysomnographically. In laboratory rodents, scoring of electrocorticography (ECoG) and electromyography (EMG) recordings is usually performed manually, where 5-10 second epochs are categorized as one of three specific stages: wakefulness, rapid-eye-movement (REM) sleep and non-REM (NREM) sleep. This process is laborious, time-consuming, and particularly impractical for large experimental cohorts with recordings lasting longer than 24 hours. To circumvent this problem, we developed an open-source Python toolkit, Sleep Identification Enabled by Supervised Training Algorithms (SIESTA), that automates the detection of these three main behavioral stages in mice. Our supervised machine learning algorithm extracts features from the ECoG and EMG signals, then automatically scores recordings with a hierarchical classifier based on Bagging Random Forest approaches. We evaluated this approach on data collected from wild-type mice housed under both normal and different lighting conditions, as well as from a mutant mouse line with abnormal sleep phenotypes. To validate its performance on test data, we compared SIESTA with manually scored data and obtained F1 scores of 0.92 for wakefulness, 0.81 for REM, and 0.93 for NREM. SIESTA has a user-friendly interface that can be used without coding expertise. To our knowledge, this is the first time that such a strategy has been developed using all opensource and freely available resources, and our aim is that SIESTA becomes a useful tool that facilitates further research of sleep in rodent models. .
Sleep Stage Classification by a Combination of Actigraphic and Heart Rate Signals
Journal of Low Power Electronics and Applications, 2017
Although heart rate variability and actigraphic data have been used for sleep-wake or sleep stage classifications, there are few studies on the combined use of them. Recent wearable sensors, however, equip both pulse wave and actigraphic sensors. This paper presents results on the performance of sleep stage classification by a combination of heart rate and actigraphic signals. We studied 40,643 epochs (length 3 min) of polysomnographic data in 289 subjects. A combined model, consisting of autonomic functional indices from heart rate variability and body movement indices derived from actigraphic data, discriminated non-rapid-eye-movement (REM) sleep from waking/REM sleep with 76.9% sensitivity, 74.5% specificity, 75.8% accuracy, and a Cohen's kappa of 0.514. The combination was also useful for discriminating between REM sleep and waking at 77.2% sensitivity, 72.3% specificity, 74.5% accuracy, and a kappa of 0.491.