Enhanced vaccine control of epidemics in adaptive networks (original) (raw)

Vaccine enhanced extinction in stochastic epidemic models

2012

We study vaccine control for disease spread on an adaptive network modeling disease avoidance behavior. Control is implemented by adding Poisson-distributed vaccination of susceptibles. We show that vaccine control is much more effective in adaptive networks than in static networks due to feedback interaction between the adaptive network rewiring and the vaccine application. When compared to extinction rates in static social networks, we find that the amount of vaccine resources required to sustain similar rates of extinction are as much as two orders of magnitude lower in adaptive networks.

Epidemic reemergence in adaptive complex networks

Physical Review E, 2012

Infectious diseases have caused tremendous losses in human health and lives and they remain as a serious threat to mankind today. To resist infectious disease, theoretical investigations have been engaged to study epidemic behaviors [1–5] and immunization strategies were suggested to prevent epidemic spreading when vaccine resources are limited [6–9]. Recently, large-scale agent-based simulations have been applied to get more detailed descriptions of disease outbreaks [10–12]. A prominent development among ...

Evolutionary vaccination dilemma in complex networks

Physical Review E, 2013

In this work we analyze the evolution of voluntary vaccination in networked populations by entangling the spreading dynamics of an influenza-like disease with an evolutionary framework taking place at the end of each influenza season so that individuals take or not the vaccine upon their previous experience. Our framework thus put in competition two well-known dynamical properties of scale-free networks: the fast propagation of diseases and the promotion of cooperative behaviors. Our results show that when vaccine is perfect scale-free networks enhance the vaccination behavior with respect to random graphs with homogeneous connectivity patterns. However, when imperfection appears we find a cross-over effect so that the number of infected (vaccinated) individuals increases (decreases) with respect to homogeneous networks, thus showing up the competition between the aforementioned properties of scale-free graphs.

Adaptive Epidemic Dynamics in Networks

ACM Transactions on Autonomous and Adaptive Systems, 2014

Theoretical modeling of computer virus/worm epidemic dynamics is an important problem that has attracted many studies. However, most existing models are adapted from biological epidemic ones. Although biological epidemic models can certainly be adapted to capture some computer virus spreading scenarios (especially when the so-called homogeneity assumption holds), the problem of computer virus spreading is not well understood because it has many important perspectives that are not necessarily accommodated in the biological epidemic models. In this paper we initiate the study of such a perspective, namely that of adaptive defense against epidemic spreading in arbitrary networks. More specifically, we investigate a non-homogeneous Susceptible-Infectious-Susceptible (SIS) model where the model parameters may vary with respect to time.

Optimal vaccine allocation to control epidemic outbreaks in arbitrary networks

52nd IEEE Conference on Decision and Control, 2013

We consider the problem of controlling the propagation of an epidemic outbreak in an arbitrary contact network by distributing vaccination resources throughout the network. We analyze a networked version of the Susceptible-Infected-Susceptible (SIS) epidemic model when individuals in the network present different levels of susceptibility to the epidemic. In this context, controlling the spread of an epidemic outbreak can be written as a spectral condition involving the eigenvalues of a matrix that depends on the network structure and the parameters of the model. We study the problem of finding the optimal distribution of vaccines throughout the network to control the spread of an epidemic outbreak. We propose a convex framework to find cost-optimal distribution of vaccination resources when different levels of vaccination are allowed. We also propose a greedy approach with quality guarantees for the case of all-or-nothing vaccination. We illustrate our approaches with numerical simulations in a real social network.

Optimising control of disease spread on networks

Acta Physica Polonica B, 2005

We consider models for control of epidemics on local, global, small-world and scale-free networks, with only partial information accessible about the status of individuals and their connections. The effectiveness of local (e.g. ring vaccination or culling) vs global (e.g. random vaccination) control measures is evaluated, with the aim of minimising the total cost of an epidemic. The costs include direct costs of treating infected individuals as well as costs of treatment. We first consider a random (global) vaccination strategy designed to stop any potential outbreak. We show that if the costs of the preventive vaccination are ignored, the optimal strategy is to vaccinate the whole population, although most of the resources are wasted on preventing a small number of cases. If the vaccination costs are included, or if a local strategy (within a certain neighbourhood of a symptomatic individual) is chosen, there is an optimum number of treated individuals. Inclusion of non-local contacts ('small-worlds' or scale-free networks) increases the levels of preventive (random) vaccination and radius of local treatment necessary for stopping the outbreak at a minimal cost. The number of initial foci also influences our choice of optimal strategy. The size of epidemics and the number of treated individuals increase for outbreaks that are initiated from a larger number of initial foci, but the optimal radius of local control actually decreases. The results are important for designing control strategies based on cost effectiveness.

Vaccination allocation in large dynamic networks

Journal of Big Data, 2017

Event propagation over a network is a complex and frequently studied human phenomena . Historical examples of information exchange between humans in a social network, past and present, can be seen during colonial expansion of the British Empire [4], memes passed between friends on any assortment of social networks on the internet [1] and transmission of human or animal pathogens such as the virus H1N1 over airways . In the information age computer networks can mirror these types of information exchange, with event information being passed along from node to node when network neighbors communicate through various network protocols .

Impact of network assortativity on epidemic and vaccination

Chaos, Solitons and Fractals, 2020

The resurgence of measles is largely attributed to the decline in vaccine adoption and the increase in mobility. Although the vaccine for measles is readily available and highly successful, its current adoption is not adequate to prevent epidemics. Vaccine adoption is directly affected by individual vaccination de- cisions, and has a complex interplay with the spatial spread of disease shaped by an underlying mobility (travelling) network. In this paper, we model the travelling connectivity as a scale-free network, and in- vestigate dependencies between the network’s assortativity and the resultant epidemic and vaccination dynamics. In doing so we extend an SIR-network model with game-theoretic components, capturing the imitation dynamics under a voluntary vaccination scheme. Our results show a correlation between the epidemic dynamics and the network’s assortativity, highlighting that networks with high assortativity tend to suppress epidemics under certain conditions. In highly assortative networks, the suppression is sustained producing an early convergence to equilibrium. In highly disassortative networks, however, the suppression effect diminishes over time due to scattering of non-vaccinating nodes, and frequent switch- ing between the predominantly vaccinating and non-vaccinating phases of the dynamics.

Effective vaccination strategies for realistic social networks

Physica A: Statistical Mechanics and its Applications, 2007

We consider the effectiveness of targeted vaccination at preventing the spread of infectious disease in a realistic social network. We compare vaccination strategies based on no information (random vaccination) to complete information (PageRank) about the network. The most effective strategy we find is to vaccinate those people with the most unvaccinated contacts. However, this strategy requires considerable information and computational effort which may not be practical. The next best strategies vaccinate people with many contacts who in turn have few contacts. Published by Elsevier B.V.