Enhanced vaccine control of epidemics in adaptive networks (original) (raw)

Abstract

We study vaccine control for disease spread on an adaptive network modeling disease avoidance behavior. Control is implemented by adding Poisson-distributed vaccination of susceptibles. We show that vaccine control is much more effective in adaptive networks than in static networks due to feedback interaction between the adaptive network rewiring and the vaccine application. When compared to extinction rates in static social networks, we find that the amount of vaccine resources required to sustain similar rates of extinction are as much as two orders of magnitude lower in adaptive networks.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (38)

  1. T. Gross, Carlos J. Dommar D'Lima, and B. Blasius, Phys. Rev. Lett. 96, 208701 ͑2006͒.
  2. L. B. Shaw and I. B. Schwartz, Phys. Rev. E 77, 066101 ͑2008͒.
  3. D. H. Zanette and S. Risau-Gusmán, J. Biol. Phys. 34, 135 ͑2008͒.
  4. S. Risau-Gusmán and D. H. Zanette, J. Theor. Biol. 257, 52 ͑2009͒.
  5. B. M. Bolker and B. T. Grenfell, Proc. R. Soc. London, Ser. B 251, 75 ͑1993͒.
  6. ͓6͔ B. M. Bolker, IMA J. Math. Appl. Med. Biol. 10, 83 ͑1993͒.
  7. J. Patz, Proc. Natl. Acad. Sci. U.S.A. 99, 12506 ͑2002͒.
  8. D. Rand and H. Wilson, Proc. R. Soc. London, Ser. B 246, 179 ͑1991͒.
  9. L. Billings, E. M. Bollt, and I. B. Schwartz, Phys. Rev. Lett. 88, 234101 ͑2002͒.
  10. H. Andersson and T. Britton, J. Math. Biol. 41, 559 ͑2000͒.
  11. O. A. van Herwaarden and J. Grasman, J. Math. Biol. 33, 581 ͑1995͒.
  12. L. Allen and A. M. Burgin, Math. Biosci. 163, 1 ͑2000͒.
  13. J. A. Jacquez and C. P. Simon, Math. Biosci. 117, 77 ͑1993͒.
  14. V. Elgart and A. Kamenev, Phys. Rev. E 70, 041106 ͑2004͒.
  15. C. R. Doering, K. V. Sargsyan, and L. M. Sander, Multiscale Model. Simul. 3, 283 ͑2005͒.
  16. M. J. Keeling and P. Rohani, Modeling Infectious Diseases in Humans and Animals ͑Princeton University Press, Princeton, 2007͒.
  17. J. Verdasca et al., J. Theor. Biol. 233, 553 ͑2005͒.
  18. M. S. Bartlett, J. R. Stat. Soc. Ser. B ͑Methodol.͒ 11, 211 ͑1949͒.
  19. I. B. Schwartz, L. Billings, M. Dykman, and A. Landsman, J. Stat. Mech. 2009, P01005.
  20. A. Kamenev and B. Meerson, Phys. Rev. E 77, 061107 ͑2008͒.
  21. R. M. Anderson and R. M. May, Infectious Diseases of Hu- mans: Dynamics and Control ͑Oxford Science Publications, New York, 1991͒.
  22. A. d'Onofrio, Math. Biosci. 179, 57 ͑2002͒. ͓23͔ S. Gao, L. Chen, and Z. Teng, Bull. Math. Biol. 69, 731 ͑2007͒.
  23. B. Shulgin, L. Stone, and Z. Agur, Bull. Math. Biol. 60, 1123 ͑1998͒.
  24. L. Stone, B. Shulgin, and Z. Agur, Math. Comput. Modell. 31, 207 ͑2000͒.
  25. X. Wang, Y. Tao, and X. Song, Appl. Math. Comput. 210, 398 ͑2009͒.
  26. M. I. Dykman, I. B. Schwartz, and A. S. Landsman, Phys. Rev. Lett. 101, 078101 ͑2008͒.
  27. ͓28͔ R. Pastor-Satorras and A. Vespignani, Phys. Rev. E 65, 036104 ͑2002͒.
  28. Z. Dezső and A.-L. Barabási, Phys. Rev. E 65, 055103͑R͒ ͑2002͒.
  29. D. H. Zanette and M. Kuperman, Physica A 309, 445 ͑2002͒.
  30. J. Miller and J. M. Hyman, Physica A 386, 780 ͑2007͒.
  31. R. Cohen, S. Havlin, and D. ben-Avraham, Phys. Rev. Lett. 91, 247901 ͑2003͒.
  32. Y. Chen, G. Paul, S. Havlin, F. Liljeros, and H. E. Stanley, Phys. Rev. Lett. 101, 058701 ͑2008͒.
  33. L. M. Pacheco Santos, R. Paes-Sousa, J. Barbosa da Silva Junior, and C. Gomes Victora, Bull. World Health Organ. 86, 474 ͑2008͒.
  34. H. W. Hethcote, Math. Biosci. 28, 335 ͑1976͒.
  35. W. R. Derrick and P. van den Driessche, J. Math. Biol. 31, 495 ͑1993͒.
  36. N. C. Grassly, C. Fraser, and G. P. Garnett, Nature ͑London͒ 433, 417 ͑2005͒.
  37. H. W. Hethcote, SIAM Rev. 42, 599 ͑2000͒. ͓39͔ Steady-state behavior occurs for other q values, but we focus here on the oscillatory regions because the dynamics is more interesting. The qualitative advantage to including both vacci- nation and rewiring is the same whether or not oscillations occur.
  38. ͓40͔ The bifurcation structure and infective levels depend primarily on the average vaccination rate A rather than on the fre- quency or amplitude individually.