The Broad Line Region of Quasars (original) (raw)
Related papers
The broad-line region in active galactic nuclei
Lecture Notes in Physics
We review the basic observed and inferred properties of the broad emission-line region in AGNs, as well as the basics of the reverberation-mapping technique that can be used to determine the size and structure of the region. We argue that the current best evidence points to a multi-component line-emitting region, with a disk-like structure, possibly an extension of the accretion disk itself, and a disk wind being strong candidates for the origin of the broad-line emission.
What broad emission lines tell us about how active galactic nuclei work
New Astronomy Reviews, 2009
I review progress made in understanding the nature of the broad-line region (BLR) of active galactic nuclei (AGNs) and the role BLRs play in the AGN phenomenon. The high equivalent widths of the lines imply a high BLR covering factor, and the absence of clear evidence for absorption by the BLR means that the BLR has a flattened distribution and that we always view it near pole-on. The BLR gas is strongly self-shielding near the equatorial plane. Velocityresolved reverberation mapping has long strongly excluded significant outflow of the BLR and shows instead that the predominant motions are Keplerian with large turbulence and a significant net inflow. The rotation and turbulence are consistent with the inferred geometry. The blueshifting of high-ionization lines is a consequence of scattering off inflowing material rather than the result of an outflowing wind. The rate of inflow of the BLR is sufficient to provide the accretion rate needed to power the AGN. Because the motions of the BLR are gravitationally dominated, and the BLR structure is very similar in most AGNs, consistent black hole masses can be determined. The good correlation between these estimates and masses predicted from the bulge luminosities of host galaxies provides strong support for the similarity of AGN continuum shapes and the correctness of the BLR picture presented. It is concluded that although many mysteries remain about the details of how AGNs work, a general overall picture of the torus and BLR is becoming clear.
What broad-line regions tell us about how active galactic nuclei work
a b s t r a c t I review progress made in understanding the nature of the broad-line region (BLR) of active galactic nuclei (AGNs) and the role BLRs play in the AGN phenomenon. The high equivalent widths of the lines imply a high BLR covering factor, and the absence of clear evidence for absorption by the BLR means that the BLR has a flattened distribution and that we always view it near pole-on. The BLR gas is strongly selfshielding near the equatorial plane. Velocity-resolved reverberation mapping has long strongly excluded significant outflow of the BLR and shows instead that the predominant motions are Keplerian with large turbulence and a significant net inflow. The rotation and turbulence are consistent with the inferred geometry. The blueshifting of high-ionization lines is a consequence of scattering off inflowing material rather than the result of an outflowing wind. The rate of inflow of the BLR is sufficient to provide the accretion rate needed to power the AGN. Because the motions of the BLR are gravitationally dominated, and the BLR structure is very similar in most AGNs, consistent black hole masses can be determined. The good correlation between these estimates and masses predicted from the bulge luminosities of host galaxies provides strong support for the similarity of AGN continuum shapes and the correctness of the BLR picture presented. It is concluded that although many mysteries remain about the details of how AGNs work, a general overall picture of the torus and BLR is becoming clear.
The Astrophysical Journal, 1998
As part of an extensive multiwavelength monitoring campaign, the International Ultraviolet Explorer satellite was used to observe the broad-line radio galaxy 3C 390.3 during the period 1994 December 31È1996 March 5. Spectra were obtained every 6È10 days. The UV continuum varied by a factor of 7 through the campaign, while the broad emission lines varied by factors of 2È5. Unlike previously monitored Seyfert 1 galaxies, in which the X-ray continuum generally varies with a larger amplitude than the UV, in 3C 390.3 the UV continuum light curve is similar in both amplitude and shape to the X-ray light curve observed by ROSAT. The UV broad emission-line variability lags that of the UV continuum by 35È70 days for Lya and C IV, values larger than those found for Seyfert 1 galaxies of comparable UV luminosity. These lags are also larger than those found for the Balmer lines in 3C 390.3 over the same period. The red and blue wings of C IV and Lya vary in phase, suggesting that radial motion does not dominate the kinematics of the UV line-emitting gas. Comparison with archival data provides evidence for velocity-dependent changes in the Lya and C IV line proÐles, indicating evolution in the detailed properties and/or distribution of the broad-line emitting gas.
The Near‐Infrared Broad Emission Line Region of Active Galactic Nuclei. I. The Observations
The Astrophysical Journal Supplement Series, 2008
We present high quality (high signal-to-noise ratio and moderate spectral resolution) nearinfrared (near-IR) spectroscopic observations of 23 well-known broad-emission line active galactic nuclei (AGN). Additionally, we obtained simultaneous (within two months) optical spectroscopy of similar quality. The near-IR broad emission line spectrum of AGN is dominated by permitted transitions of hydrogen, helium, oxygen, and calcium, and by the rich spectrum of singly-ionized iron. In this paper we present the spectra, line identifications and measurements, and address briefly some of the important issues regarding the physics of AGN broad emission line regions. In particular, we investigate the excitation mechanism of neutral oxygen and confront for the first time theoretical predictions of the near-IR iron emission spectrum with observations.
Evolution of active galactic nuclei broad-line region clouds: low- and high-ionization lines
Monthly Notices of The Royal Astronomical Society, 2001
The formation of quasar broad-line region (BLR) clouds via thermal instability in the presence of Alfven heating has been discussed by Goncalves et al. (1993a, 1996). In particular, these studies showed the relevance of Alfven heating in establishing the stability of BLR clouds in the intercloud medium. The present paper shows the results of time-dependent calculations (we use a time-dependent hydrodynamic code) following the evolution of BLR clouds, since their formation from the 10^7 K intercloud medium. We also calculate the UV and optical line emission associated with the clouds in order to compare with observations. Our results are compared with those of UV and optical monitoring of well-studied AGN, which suggest that the BLR is most probably composed of at least two different regions, each one giving rise to a kind of line variability, since low- and high-ionization lines present different patterns of variability. We discuss the alternative scenario in which lines of different ionization could be formed at the same place but heated/excited by distinct mechanisms, considering as a non-radiative mechanism the Alfven heating.
2004
We present the results of an analysis of line profiles of highand low-ionization broad emission lines in 8 AGNs observed by the Hubble Space Telescope. We derive the physical conditions in the gas as a function of velocity. We find no evidence for a separate intermediate line region. For the broad line region as a whole we find a major contradiction between the velocity dependencies of conditions deduced from the major high-ionization lines and those deduced from the hydrogen lines alone if they are assumed to come from the same gas clouds. The hydrogen lines imply that the density decreases with decreasing velocity and the ionizing flux on the gas also decreases with decreasing velocity, while both the density and the ionizing flux deduced from the high-ionization lines are independent of the velocity. We believe that there are two kinematically distinct components of the BLR. The change in ionizing flux implied by the hydrogen lines is consistent with virialization of the motions ...
The Astrophysical Journal, 1998
As part of an extensive multi-wavelength monitoring campaign, the International Ultraviolet Explorer satellite was used to observe the broad-line radio galaxy 3C 390.3 during the period 1994 December 31 to 1996 March 5. Spectra were obtained every 6-10 days. The UV continuum varied by a factor of 7 through the campaign, while the broad emission-lines varied by factors of 2-5. Unlike previously monitored Seyfert 1 galaxies, in which the X-ray continuum generally varies with a larger amplitude than the UV, in 3C 390.3 the UV continuum light-curve is similar in both amplitude and shape to the X-ray light-curve observed by ROSAT. The UV broad emission-line variability lags that of the UV continuum by 35-70 days for Lyα and C iv; values larger than those found for Seyfert 1 galaxies of comparable UV luminosity. These lags are also larger than those found for the Balmer lines in 3C 390.3 over the same period. The red and blue wings of C iv and Lyα vary in phase, suggesting that radial motion does not dominate the kinematics of the UV line-emitting gas. Comparison with archival data provides evidence for velocity-dependent changes in the Lyα and C iv line profiles, indicating evolution in the detailed properties and/or distribution of the broad-line emitting gas.
Double-peaked emission lines as a probe of the broad-line regions of active galactic nuclei
New Astronomy Reviews, 2009
Broad, double-peaked, Balmer emission lines are found in the optical spectra of a relatively small fraction of active galactic nuclei. They can be an extremely useful diagnostic for the structure and dynamics of the ''broad-line region" (the medium that emits the broad emission lines). In general terms the rarity and shapes of their profiles provide strong constraints on universal models of the broad-line region. A series of observational tests and basic physical considerations suggest that these lines are emitted from a flat, rotating disk, very likely the outer parts of the accretion disk that fuels the black hole. In the context of models for accretion disk winds, double-peaked emission lines originate in disks with feeble winds of low optical depth. Therefore, they provide evidence that the outer accretion disk and its associated wind are the source of the broad emission lines. Within this framework, double-peaked Balmer emission lines and corresponding high-ionization lines in the near-ultraviolet allow us to study the conditions under which the winds become dense and the onset of significant outflows. Moreover, double-peaked emission lines give us a direct view of the dense material of the disk proper and allow us to study dynamical perturbations and other transient behavior though the long-term variability of their profiles.
The origin of the broad line region in active galactic nuclei
Astronomy & Astrophysics, 2011
Aims. Although broad emission lines are the most reliable signature of the nuclear activity of a galaxy and the location of the emitting material is well measured by the reverberation method, the physical cause of the formation of the broad line region remains unclear. We attempt to place some constraints on its origin. Methods. We study the properties of the accretion disk underlying the broad line region. Results. We find that the effective temperature at the disk radius corresponding to the location of the broad line region, as inferred from the Hβ line, is universal in all monitored sources and equal to 1000 K. This value is close to the limiting value that permits for the existence of the dust. Conclusions. The likely origin of the low ionization part of the broad line region is the strong local dusty wind from the disk. This wind becomes exposed to the irradiation by the central regions when moving higher above the disk surface and subsequently behaves like a failed wind, thus leading to a local mixture of inflow and outflow. This may provide the physical explanation of the turbulence needed both to smooth the line profiles as well as provide additional mechanical heating.