Science-1995-Article-1745 (original) (raw)

Vesicles driven by dynein and kinesin exhibit directional reversals without external regulators

Intracellular transport along cytoskeletal filaments propelled by molecular motors ensures the targeted delivery of cargoes to their destinations. Such transport is rarely unidirectional but rather bidirectional, including intermittent pauses and directional reversals owing to the simultaneous presence of opposite-polarity motors. It has been unclear whether such a complex motility pattern results from the sole mechanical interplay between opposite-polarity motors or requires external regulators. Here, we addressed this outstanding question by reconstituting cargo motility along microtubules in vitro by attaching purified Dynein-Dynactin-BICD2 (DDB) and kinesin-3 (KIF16B) to large unilamellar vesicles. Strikingly, we found that this minimal system is sufficient to recapitulate runs, pauses and reversals similar to in vivo cargo motility. In our experiments, reversals were always preceded by vesicle pausing and the transport directionality could be tuned by the relative numbers of op...

How molecular motors are arranged on a cargo is important for vesicular transport

2011

The spatial organization of the cell depends upon intracellular trafficking of cargos hauled along microtubules and actin filaments by the molecular motor proteins kinesin, dynein, and myosin. Although much is known about how single motors function, there is significant evidence that cargos in vivo are carried by multiple motors. While some aspects of multiple motor function have received attention, how the cargo itself-and motor organization on the cargo-affects transport has not been considered. To address this, we have developed a three-dimensional Monte Carlo simulation of motors transporting a spherical cargo, subject to thermal fluctuations that produce both rotational and translational diffusion. We found that these fluctuations could exert a load on the motor(s), significantly decreasing the mean travel distance and velocity of large cargos, especially at large viscosities. In addition, the presence of the cargo could dramatically help the motor to bind productively to the microtubule: the relatively slow translational and rotational diffusion of moderately sized cargos gave the motors ample opportunity to bind to a microtubule before the motor/cargo ensemble diffuses out of range of that microtubule. For rapidly diffusing cargos, the probability of their binding to a microtubule was high if there were nearby microtubules that they could easily reach by translational diffusion. Our simulations found that one reason why motors may be approximately 100 nm long is to improve their 'on' rates when attached to comparably sized cargos. Finally, our results suggested that to efficiently regulate the number of active motors, motors should be clustered together rather than spread randomly over the surface of the cargo. While our simulation uses the specific parameters for kinesin, these effects result from generic properties of the motors, cargos, and filaments, so they should apply to other motors as well.

Kinesin Assembly and Movement in Cells

Annual Review of Biophysics, 2011

Long-distance transport in eukaryotic cells is driven by molecular motors that move along microtubule tracks. Molecular motors of the kinesin superfamily contain a kinesin motor domain attached to familyspecific sequences for cargo binding, regulation, and oligomerization. The biochemical and biophysical properties of the kinesin motor domain have been widely studied, yet little is known about how kinesin motors work in the complex cellular environment. We discuss recent studies on the three major families involved in intracellular transport (kinesin-1, kinesin-2, and kinesin-3) that have begun to bridge the gap in knowledge between the in vitro and in vivo behaviors of kinesin motors. These studies have increased our understanding of how kinesin subunits assemble to produce a functional motor, how kinesin motors are affected by biochemical cues and obstacles present on cellular microtubules, and how multiple motors on a cargo surface can work collectively for increased force production and travel distance.

Vesicle Movements and Microtubule-Based Motors

Journal of Cell Science, 1986

The movements of many cytoplasmic vesicles follow the paths of microtubules, some moving in one direction and others moving in the opposite direction on the same microtubule. Recently we have isolated one cytoplasmic motor, kinesin, and defined another, the axoplasmic retrograde factor, both of which are capable of powering anionic latex beads in both directions along polar microtubule arrays. Evidence summarized here supports but does not prove the hypothesis that kinesin and the retrograde motors are indeed responsible for powering vesicle movements.

Transport and self-organization across different length scales powered by motor proteins and programmed by DNA

Nature Nanotechnology, 2013

In eukaryotic cells, cargo is transported on self-organised networks of microtubule trackways by kinesin and dynein motor proteins 1,2 . Synthetic microtubule networks have previously been assembled in vitro 3-5 and microtubules have been used as shuttles to carry cargoes on lithographically-defined tracks consisting of surface-bound kinesin motors 6,7 . Here we show that molecular signals can be used to program both the architecture and the operation of a selforganized transport system based on kinesin and microtubules and spans three orders of magnitude in length scale. A single motor protein -dimeric kinesin 1 8 -is conjugated to various DNA nanostructures to accomplish different tasks. Instructions encoded into the DNA sequences are used to direct the assembly of a polar array of microtubules and can be used to control the loading, active concentration and unloading of cargo on this track network or to trigger the disassembly of the network.

Intracellular transport driven by cytoskeletal motors: General mechanisms and defects

Physics Reports, 2015

Cells are the elementary units of living organisms, which are able to carry out many vital functions. These functions rely on active processes on a microscopic scale. Therefore, they are strongly out-of-equilibrium systems, which are driven by continuous energy supply. The tasks that have to be performed in order to maintain the cell alive require transportation of various ingredients, some being small, others being large. Intracellular transport processes are able to induce concentration gradients and to carry objects to specific targets. These processes cannot be carried out only by diffusion, as cells may be crowded, and quite elongated on molecular scales. Therefore active transport has to be organized.

Fewer active motors per vesicle may explain slowed vesicle transport in chick motoneurons after three days in vitro

Brain research, 2008

Vesicle transport in cultured chick motoneurons was studied over a period of 3 days using motion-enhanced differential interference contrast (MEDIC) microscopy, an improved version of video-enhanced DIC. After 3 days in vitro (DIV), the average vesicle velocity was about 30% less than after 1 DIV. In observations at 1, 2 and 3 DIV, larger vesicles moved more slowly than small vesicles, and retrograde vesicles were larger than anterograde vesicles. The number of retrograde vesicles increased relative to anterograde vesicles after 3 DIV, but this fact alone could not explain the decrease in velocity, since the slowing of vesicle transport in maturing motoneurons was observed independently for both anterograde and retrograde vesicles. In order to better understand the slowing trend, the distance vs. time trajectories of individual vesicles were examined at a frame rate of 8.3/s. Qualitatively, these trajectories consisted of short (1-2 s) segments of constant velocity, and the changes in velocity between segments were abrupt (<0.2 s). The trajectories were therefore fit to a series of connected straight lines.

Membrane tube formation from giant vesicles by dynamic association of motor proteins

Proceedings of the National Academy of Sciences, 2003

The tubular morphology of intracellular membranous compartments is actively maintained through interactions with motor proteins and the cytoskeleton. Moving along cytoskeletal elements, motor proteins exert forces on the membranes to which they are attached, resulting in the formation of membrane tubes and tubular networks. To study the formation of membrane tubes by motor proteins, we developed an in vitro assay consisting of purified kinesin proteins directly linked to the lipids of giant unilamellar vesicles. When the vesicles are brought into contact with a network of immobilized microtubules, membrane tubes and tubular networks are formed. Through systematic variation of the kinesin concentration and membrane composition we study the mechanism involved. We show that a threshold concentration of motor proteins is needed and that a low membrane tension facilitates tube formation. Forces involved in tube formation were measured directly with optical tweezers and are shown to depend only on the tension and bending rigidity of the membrane. The forces were found to be higher than can be generated by individual motor proteins, indicating that multiple motors were working together to pull tubes. We propose a simple mechanism by which individual motor proteins can dynamically associate into clusters that provide the force needed for the formation of tubes, explaining why, in contrast to earlier findings [Roux, A., Cappello, G., Cartaud, J., Prost, J., Goud, B. & Bassereau, P. (2002) Proc. Natl. Acad. Sci. USA 99, 5394 -5399], motor proteins do not need to be physically linked to each other to be able to pull tubes.

Molecular Motors: Strategies to Get Along

Current Biology, 2004

The majority of active transport in the cell is driven by three classes of molecular motors: the kinesin and dynein families that move toward the plus-end and minus-end of microtubules, respectively, and the unconventional myosin motors that move along actin filaments. Each class of motor has different properties, but in the cell they often function together. In this review we summarize what is known about their single-molecule properties and the possibilities for regulation of such properties. In view of new results on cytoplasmic dynein, we attempt to rationalize how these different classes of motors might work together as part of the intracellular transport machinery. We propose that kinesin and myosin are robust and highly efficient transporters, but with somewhat limited room for regulation of function. Because cytoplasmic dynein is less efficient and robust, to achieve function comparable to the other motors it requires a number of accessory proteins as well as multiple dyneins functioning together. This necessity for additional factors, as well as dynein's inherent complexity, in principle allows for greatly increased control of function by taking the factors away either singly or in combination. Thus, dynein's contribution relative to the other motors can be dynamically tuned, allowing the motors to function together differently in a variety of situations.