Photocatalytic Degradation of Microcystins by TiO2 Using UV-LED Controlled Periodic Illumination (original) (raw)

Abstract

Toxic microcystins (MCs) produced by freshwater cyanobacteria such as Microcystis aeruginosa are of concern because of their negative health and economic impacts globally. An advanced oxidation process using UV/TiO2 offers a promising treatment option for hazardous organic pollutants such as microcystins. The following work details the successful degradation of MC-LA, MC-LR, and MC-RR using a porous titanium–titanium dioxide (PTT) membrane under UV-LED light. Microcystin quantitation was achieved by sample concentration and subsequent LC–MS/MS analysis. The PTT membrane offers a treatment option that eliminates the need for the additional filtration or separation steps required for traditional catalysts. Controlled periodic illumination was successfully used to decrease the total light exposure time and improve the photonic efficiency for a more cost-effective treatment system. Individual degradation rates were influenced by electrostatic forces between the catalyst and differently ...

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (41)

  1. Dawson, R.M. The Toxicology of Microcystins. Toxicon 1998, 36, 953-962. [CrossRef]
  2. Merel, S.; Walker, D.; Chicana, R.; Snyder, S.; Baurès, E.; Thomas, O. State of knowledge and concerns on cyanobacterial blooms and cyanotoxins. Environ. Int. 2013, 59, 303-327. [CrossRef] [PubMed]
  3. Umehara, A.; Takahashi, T.; Komorita, T.; Orita, R.; Chio, J.-W.; Takenaka, R.; Mabuchi, R.; Park, H.-D.; Tsutsumi, H. Widespread dispersal and bio-accumulation of toxic microcystins in benthic marine ecosystems. Chemoshpere 2017, 167, 492-500. [CrossRef] [PubMed]
  4. Chambon, P.; Lund, U.; Galal-Gorchev, H.; Ohanian, E. Guidelines for Drinking-Water Quality Volume 2- Health Criteria and Other Supporting Information, 2nd ed.; Kenny, J., Galal-Gorchev, H., Eds.; World Health Organisation: Geneva, Switzerland, 1998; Volume 2.
  5. Committee on Drinking Water. Cyanobacterial Toxins in Drinking Water; Committee on Drinking Water: Ottawa, ON, Canada, 2016.
  6. Wolf, D.; Klaiber, H.A. Bloom and bust: Toxic algae's impact on nearby property values. Ecol. Econ. 2017, 135, 209-221. [CrossRef]
  7. Dyson, K.; Huppert, D.D. Regional economic impacts of razor clam beach closures due to harmful algal blooms (HABs) on the Pacific coast of Washington. Harmful Algae 2010, 9, 264-271. [CrossRef]
  8. Sharma, V.K.; Triantis, T.M.; Antoniou, M.G.; He, X.; Pelaez, M.; Han, C.; Song, W.; O'shea, K.E.; De La Cruz, A.A.; Kaloudis, T.; et al. Destruction of microcystins by conventional advanced oxidation processes: A review. Sep. Purif. Technol. 2012, 91, 3-17. [CrossRef]
  9. Liu, I.; Lawton, L.A.; Bahnemann, D.W.; Liu, L.; Proft, B.; Robertson, P.K.J. The photocatalytic decomposition of microcystin-LR using selected titanium dioxide materials. Chemosphere 2009, 76, 549-553. [CrossRef] [PubMed]
  10. Shephard, G.S.; Om, S.S.O.; De Villiers, D.; Engelbrecht, W.J.; E El, G.; Wessels, F.S. Degradation of microcystin toxins in a falling film photocatalytic reactor with immobilized titanium dioxide catalyst. Water Res. 2002, 36, 140-146. [CrossRef]
  11. Cornish, B.J.P.A.; Lawton, L.A.; Robertson, P.K.J. Hydrogen peroxide enhanced photocatalytic oxidation of microcystin-LR using titanium dioxide. Appl. Catal. B Environ. 2000, 25, 59-67. [CrossRef]
  12. Lawton, L.A.; Robertson, P.K.J.; Cornish, B.J.P.A.; Marr, I.L.; Jaspars, M. Processes influencing surface interaction and photocatalytic destruction of microcystins on titanium dioxide photocatalysts. J. Catal. 2003, 213, 109-113. [CrossRef]
  13. Rizzo, L.; Meric, S.; Guida, M.; Kassinos, D.; Belgiorno, V. Heterogenous photocatalytic degradation kinetics and detoxification of an urban wastewater treatment plant effluent contaminated with pharmaceuticals. Water Res. 2009, 43, 4070-4078. [CrossRef] [PubMed]
  14. Liang, R.; Hu, A.; Li, W.; Zhou, Y.N. Enhanced degradation of persistent pharmaceuticals found in wastewater treatment effluents using TiO2 nanobelt photocatalysts. J. Nanopart. Res. 2013, 15, 1990. [CrossRef]
  15. Martínez, C.; Canle L., M.; Fernández, M.I.; Santaballa, J.A.; Faria, J. Aqueous degradation of diclofenac by heterogeneous photocatalysis using nanostructured materials. Appl. Catal. B Environ. 2011, 107, 110-118.
  16. Arlos, M.J.; Liang, R.; Hatat-Fraile, M.M.; Bragg, L.M.; Zhou, N.Y.; Servos, M.R.; Andrews, S.A. Photocatalytic decomposition of selected estrogens and their estrogenic activity by UV-LED irradiated TiO2 immobilized on porous titanium sheets via thermal-chemical oxidation. J. Hazard. Mater. 2016, 318, 541-550. [CrossRef] [PubMed]
  17. Arlos, M.J.; Hatat-Fraile, M.M.; Liang, R.; Bragg, L.M.; Zhou, N.Y.; Andrews, S.A.; Servos, M.R. Photocatalytic decomposition of organic micropollutants using immobilized TiO 2 having different isoelectric points. Water Res. 2016, 101, 351-361. [CrossRef] [PubMed]
  18. Ku, Y.; Shiu, S.-J.; Wu, H.-C. Decomposition of dimethyl phthalate in aqueous solution by UV-LED/TiO 2 process under periodic illumination. J. Photochem. Photobiol. A Chem. 2017, 332, 299-305. [CrossRef]
  19. Buechler, K.J.; Nam, C.H.; Zawistowski, T.M.; Noble, R.D.; Koval, C.A. Design and Evaluation of a Novel-Controlled Periodic Illumination Reactor To Study Photocatalysis. Ind. Eng. Chem. Res. 1999, 38, 1258-1263. [CrossRef]
  20. Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J.; Horiuchi, Y.; Anpo, M.; Bahnemann, D.W. Understanding TiO 2 Photocatalysis: Mechanisms and Materials. Chem. Rev. 2014, 114, 9919-9986. [CrossRef]
  21. Manassero, A.; Satuf, M.L.; Alfano, O.M. Photocatalytic reactors with suspended and immobilized TiO 2 : Comparative efficiency evaluation. Chem. Eng. J. 2017, 326, 29-36. [CrossRef]
  22. Heged űs, P.; Szabó-Bárdos, E.; Horváth, O.; Szabó, P.; Horváth, K. Investigation of a TiO 2 photocatalyst immobilized with poly(vinyl alcohol). Catal. Today 2017, 284, 179-186. [CrossRef]
  23. Sczechowski, J.G.; Koval, C.A.; Noble, R.D. Evidence of critical illumination and dark recovery times for increasing the photoefficiency of aqueous heterogeneous photocatalysis. J. Photochem. Photobiol. A Chem. 1993, 74, 273-278. [CrossRef]
  24. Tokode, O.; Prabhu, R.; Lawton, L.A.; Robertson, P.K.J. Controlled periodic illumination in semiconductor photocatalysis. J. Photochem. Photobiol. A Chem. 2016, 319-320, 96-106. [CrossRef] Catalysts 2019, 9, 181 10 of 10
  25. Liang, R.; Van Leuwen, J.C.; Bragg, L.M.; Arlos, M.J.; Li Chun Fong, L.C.M.; Schneider, O.M.; Peng, P.; Servos, M.R.; Zhou, Y.N. Utilizing UV-LED pulse width modulation on TiO 2 advanced oxidation processes to enhance the decomposition efficiency of pharmaceutical micropollutants. Chem. Eng. J. 2019, 361, 439-449. [CrossRef]
  26. Friedmann, D.; Mendive, C.; Bahnemann, D. Environmental TiO 2 for water treatment: Parameters affecting the kinetics and mechanisms of photocatalysis. Appl. Catal. B Environ. 2010, 99, 398-406. [CrossRef]
  27. Memming, R. Photoinduced charge transfer processes at semiconductor electrodes and particles. In Topics in Current Chemistry; Springer: Berlin/Heidelberg, Germany, 1994; Volume 169, pp. 105-181, ISBN 978-3-540-57565-8.
  28. Sczechowski, J.G.; Koval, C.A.; Noble, R.D. A Taylor vortex reactor for heterogeneous photocatalysis. Chem. Eng. Sci. 1995, 50, 3163-3173. [CrossRef]
  29. Miranda-García, N.; Maldonado, M.I.; Coronado, J.M.; Malato, S. Degradation study of 15 emerging contaminants at low concentration by immobilized TiO 2 in a pilot plant. Catal. Today 2010, 151, 107-113.
  30. Miranda-García, N.; Suárez, S.; Sánchez, B.; Coronado, J.M.; Malato, S.; Maldonado, M.I. Photocatalytic degradation of emerging contaminants in municipal wastewater treatment plant effluents using immobilized TiO2 in a solar pilot plant. Appl. Catal. B Environ. 2011, 103, 294-301. [CrossRef]
  31. Sun, W.; Li, S.; Mai, J.; Ni, J. Initial photocatalytic degradation intermediates/pathways of 17α-ethynylestradiol: Effect of pH and methanol. Chemosphere 2010, 81, 92-99. [CrossRef] [PubMed]
  32. Nasuhoglu, D.; Berk, D.; Yargeau, V. Photocatalytic removal of 17α-ethinylestradiol (EE2) and levonorgestrel (LNG) from contraceptive pill manufacturing plant wastewater under UVC radiation. Chem. Eng. J. 2012, 185-186, 52-60. [CrossRef]
  33. Kralchevska, R.; Milanova, M.; Bistan, M.; Pintar, A.; Todorovsky, D. The photocatalytic degradation of 17α-ethynylestradiol by pure and carbon nanotubes modified TiO 2 under UVC illumination. Open Chem. 2012, 10, 1137-1148. [CrossRef]
  34. Marinho, B.A.; de Liz, M.V.; Lopes Tiburtius, E.R.; Nagata, N.; Peralta-Zamora, P.; Iguchi, T.; Kubota, Y.; Fujishima, A. TiO 2 and ZnO mediated photocatalytic degradation of E2 and EE2 estrogens. Photochem. Photobiol. Sci. 2013, 12, 678-683. [CrossRef] [PubMed]
  35. Fernández, R.L.; McDonald, J.A.; Khan, S.J.; Le-Clech, P. Removal of pharmaceuticals and endocrine disrupting chemicals by a submerged membrane photocatalysis reactor (MPR). Sep. Purif. Technol. 2014, 127, 131-139. [CrossRef]
  36. Nosaka, Y.; Nosaka, A.Y. Photocatalysis and Water Purification: From Fundamentals to Recent Applications; John Wiley & Sons: Hoboken, NJ, USA, 2013; pp. 3-23.
  37. Paul, T.; Miller, P.L.; Strathmann, T.J. Visible-light-mediated TiO 2 photocatalysis of fluoroquinolone antibacterial agents. Environ. Sci. Technol. 2007, 41, 4720-4727. [CrossRef] [PubMed]
  38. Turchi, C.S.; Ollis, D.F. Photocatalytic degradation of organic water contaminants: Mechanisms involving hydroxyl radical attack. J. Catal. 1990, 122, 178-192. [CrossRef]
  39. Cernigoj, U.; Kete, M.; Stangar, U.L. Development of a fluorescence-based method for evaluation of self-cleaning properties of photocatalytic layers. Catal. Today 2010, 151, 46. [CrossRef]
  40. Gora, S.; Liang, R.; Zhou, Y.N.; Andrews, S. Settleable engineered titanium dioxide nanomaterials for the removal of natural organic matter from drinking water. Chem. Eng. J. 2018, 334, 638-649. [CrossRef]
  41. Liang, R.; Li Chun Fong, L.C.M.; Arlos, M.J.; Van Leeuwen, J.; Shahnam, E.; Peng, P.; Servos, M.R.; Zhou, Y.N. Photocatalytic degradation using one-dimensional TiO 2 and Ag-TiO 2 nanobelts under UV-LED controlled periodic illumination. J. Environ. Chem. Eng. 2017, 5, 4365-4373. [CrossRef]