Thioamide-Based Fluorescent Protease Sensors (original) (raw)

Design of peptide substrates for nanosecond time-resolved fluorescence assays of proteases: 2,3-Diazabicyclo[2.2.2]oct-2-ene as a noninvasive fluorophore

Analytical Biochemistry, 2007

Fluorescence protease assays were investigated with peptide substrates containing a 2,3-diazabicyclo[2.2.2]oct-2-ene-labeled asparagine (Dbo) as a fluorescent amino acid. The special characteristic of the fluorophore Dbo is its exceedingly long fluorescence lifetime (ca. 300 ns in water under air), which allows the use of nanosecond time-resolved fluorescence (Nano-TRF) detection to efficiently suppress shorter-lived background emission. In addition, the natural amino acids tryptophan and tyrosine can be employed as intramolecular fluorescence quenchers, which facilitates substrate design. Fourteen synthetic peptide substrates (composed of 2-19 amino acids) and five enzymes (trypsin, pepsin, carboxypeptidase A, leucine aminopeptidase, and chymotrypsin) were investigated and, in all 28 examined combinations, enzymatic activity was detected by monitoring the increase in steady state fluorescence with time and determining the reaction rates as k cat /K m values, which ranged from 0.2 to 80 · 10 6 M À1 min À1 . The results suggest an excellent compatibility of the very small and hydrophilic fluorescent probe Dbo with solid-phase peptide synthesis and the investigated proteases. For all 14 peptides the fluorescence lifetimes before and after enzymatic cleavage were measured and Nano-TRF measurements were performed in 384-well microplates. The fluorescence lifetimes of the different peptides provide the basis for the rational design of Dbo-based fluorescent substrates for protease assays. Measurements in Nano-TRF mode revealed, in addition to efficient suppression of background fluorescence, an increased differentiation between cleaved and uncleaved substrate. The Dbo-based assays can be adapted for high-throughput screening.

Measurement of Specific Protease Activity Utilizing Fluorescence Polarization

Analytical Biochemistry, 1997

substrates offers an alternative method that avoids in-A fluorescence polarization assay was designed to terference, but disposal and safety concerns make this measure proteolytic cleavage of a specific peptide subapproach less attractive. strate for human cytomegalovirus protease. The pep-We present an assay for site-specific proteolytic actide substrate was derivatized by biotinylation of a tivity utilizing fluorescence polarization. The substrate g-aminobutyric acid-modified amino-terminus and lais a protease-specific peptide derivatized by biotinylabeled with 5-(4,6-dichlorotriazinyl)aminofluorescein tion of the amino-terminus and coupling of a fluoroat the carboxy-terminus. Incubation of this substrate phore at the carboxy-terminal end. Proteolytic activity with recombinant human cytomegalovirus protease was quantitated from the total fluorescence polarizaand subsequent addition of egg white avidin produced tion of the mixture of cleaved and uncleaved peptide a polarization signal that was proportional to the relaafter incubation with the protease. Since the fluorestive amounts of cleaved and uncleaved substrate. The cence polarization value is the ratio of orthogonal fluouncleaved substrate produced a high polarization rescence intensities, it is not sensitive to absorptive value upon binding to avidin, whereas the cleaved, interferants. We demonstrate the assay robustness to low-molecular-weight fluorescently tagged peptide absorptive interferants by measuring the polarization that cannot bind to avidin produced a low polarization of a constant concentration of biotin-fluorescein, biovalue. The inhibitory activity of a 3,4-dichloroisocoumtin, and avidin in the presence of increasing concentraarin against the protease was evaluated by comparing tions of dyes that absorb where fluorescein either abthe change in polarization with a noninhibited consorbs or emits. trol. The fluorescence polarization protease assay does not suffer from interference due to the presence of absorptive interferants making this a convenient, ho-MATERIALS AND METHODS mogenous assay for high throughput screening. ᭧ 1997 Chemicals and Reagents Academic Press Avidin, biotin-fluorescein, and 5-(4,6-dichlorotriazinyl)aminofluorescein (DTAF) 1 were purchased from Molecular Probes (Eugene, OR). Bovine serum albumin The activity of proteases recognizing specific cleav-(fraction V; BSA), 3-[(3-chloramidopropyl)-dimethyage sites is usually measured using substrates conlammonio]-1-propane sulfonate (Chaps), g-aminobusisting of a specific peptide modified by the addition of tyric acid (Abu), 3,4-dichloroisocoumarin, mordant blue latently colorimetric or fluorescent moieties (1-6). The 3, eosin B, and biotin were purchased from Sigma (St. hydrolysis products of these synthetic substrates pos-Louis, MO). All other chemicals were analytical grade. sess spectral features that enable quantitative deter-Buffers were stored at 4ЊC after preparation in ultramination of substrate cleavage. Substrates of this type pure water (Millipore Milli-Q) and further filtered are widely used in the characterization of many differthrough 0.2-mm filters. Recombinant human cytomegaent proteases. However, evaluation of potential inhibitors in complex mixtures such as natural products ex-1 Abbreviations used: DTAF, 5-(4,6-dichlorotriazinyl)aminofluortracts can be severely limited because these mixtures escein; BSA, bovine serum albumin; Chaps, 3-[(3-chloramidopropyl)often contain other components that interfere with dimethylammonio]-1-propane sulfonate; PBS, phosphate-buffered saline; HCMV, human cytomegalovirus; Abu, g-aminobutyric acid.

Highly sensitive and adaptable fluorescence-quenched pair discloses the substrate specificity profiles in diverse protease families

Scientific Reports, 2017

Internally quenched fluorescent (IQF) peptide substrates originating from FRET (Förster Resonance Energy Transfer) are powerful tool for examining the activity and specificity of proteases, and a variety of donor/acceptor pairs are extensively used to design individual substrates and combinatorial libraries. We developed a highly sensitive and adaptable donor/acceptor pair that can be used to investigate the substrate specificity of cysteine proteases, serine proteases and metalloproteinases. This novel pair comprises 7-amino-4-carbamoylmethylcoumarin (ACC) as the fluorophore and 2,4-dinitrophenyl-lysine (Lys(DNP)) as the quencher. Using caspase-3, caspase-7, caspase-8, neutrophil elastase, legumain, and two matrix metalloproteinases (MMP2 and MMP9), we demonstrated that substrates containing ACC/ Lys(DNP) exhibit 7 to 10 times higher sensitivity than conventional 7-methoxy-coumarin-4-yl acetic acid (MCA)/Lys(DNP) substrates; thus, substantially lower amounts of substrate and enzyme can be used for each assay. We therefore propose that the ACC/Lys(DNP) pair can be considered a novel and sensitive scaffold for designing substrates for any group of endopeptidases. We further demonstrate that IQF substrates containing unnatural amino acids can be used to investigate protease activities/ specificities for peptides containing post-translationally modified amino acids. Finally, we used IQF substrates to re-investigate the P1-Asp characteristic of caspases, thus demonstrating that some human caspases can also hydrolyze substrates after glutamic acid. The irreversible peptide bond hydrolysis of proteins and polypeptides is the most conserved post-translational modification occurring in biochemical pathways in all living organisms 1,2. This reaction is catalyzed by proteases, which specifically recognize protein targets to control numerous significant biological processes, including cell survival and cell death and the immune response to various pathogens 3. The selectivity of proteases for binding and subsequently hydrolyzing a selected group of peptides or proteins is termed substrate specificity 4,5. The increasing number of chemical tools for substrate specificity profiling allows the development of new, more efficient and more selective small molecule substrates 6,7 , inhibitors 8 , and chemical probes 9 , which are useful for the determination of protease activity and the dissection of their physiological functions. Internally quenched fluorescent (IQF) peptide substrates constitute a convenient tool for examining the specificity of the largest group of proteases-endopeptidases 10. These substrates contain a paired fluorophore (donor) and quencher (acceptor), which are located on opposite sides of the scissile peptide bond 11,12. If the fluorophore

A green fluorescent chemosensor for amino acids provides a versatile high-throughput screening (HTS) assay for proteases

Bioorganic & Medicinal Chemistry Letters, 2003

The water soluble fluorescein-based ligand 1 forms a non-fluorescent complex with Cu 2+ . This complex serves as a fluorescent sensor for amino acids in the 10 À3 M concentration range. Since the signal response is very fast, the sensor can be used to detect the hydrolytic activity of various proteases (trypsin, chymotrypsin, subtilisin) on bovine serum albumin as a whole protein substrate, and more generally to follow reactions releasing or removing free amino acids, in real time. #

A bioluminescent assay for the sensitive detection of proteases

BioTechniques, 2011

A bioluminescent general protease assay was developed using a combination of five luminogenic peptide substrates. The peptide-conjugated luciferin substrates were combined with luciferase to form a homogeneous, coupled-enzyme assay. This single-reagent format minimized backgrounds, gave stable signals, and reached peak sensitivity within 30 min. The bioluminescent assay was used to detect multiple proteases representing serine, cysteine, and metalloproteinase classes. The range of proteases detected was broader and the sensitivity greater, when compared with a standard fluorescent assay based on cleavage of the whole protein substrate casein. Fifteen of twenty proteases tested had signal-to-background ratios >10 with the bioluminescent method, compared with only seven proteases with the fluorescent approach. The bioluminescent assay also achieved lower detection limits (≤100 pg) than fluorescent methods. During protein purification processes, especially for therapeutic proteins, ...

Continuous Assay of Proteases Using a Microtiter Plate Fluorescence Reader

Analytical Biochemistry, 1997

. The drawback of these assays is that proteases sometimes behave differently toward small peptides or David A. Menges, Damian L. Ternullo, in hydrolysis of a bond that is not a true peptide bond. Recently, an assay that combines the uses of a natural protein, the sensitivity of fluorescence, and the ease

Simple assay for proteases based on aggregation of stimulus-responsive polypeptides

Analytical chemistry, 2014

Unregulated changes in protease activity are linked to many diseases including cancer. Fast, accurate, and low-cost assays for detection of these changes are being explored for early diagnosis and monitoring of these diseases and can also be used as platforms for the discovery of new drugs. We report a new methodology for the simple detection and quantification of protease activity in buffer and human serum. The assay is based on recombinant diblock polypeptides that undergo temperature- or salt-triggered micellization in water. The coronae of the micelles are linked to the water-insoluble cores by a peptide substrate that is cleaved in the presence of the target protease. Protease cleavage of the diblock polypeptide triggers the aggregation of the core-forming segment, leading to a change in solution optical density, which can be used to detect the presence of, and to quantify the concentration of, protease. We used matrix metalloproteinase-1 (MMP-1) as a model protease and found p...

Homogeneous, Bioluminescent Protease Assays: Caspase-3 as a Model

Journal of Biomolecular Screening, 2005

Using caspase-3 as a model, the authors have developed a strategy for highly sensitive, homogeneous protease assays suitable for high-throughput, automated applications. The assay uses peptide-conjugated aminoluciferin as the protease substrate and a firefly luciferase that has been molecularly evolved for increased stability. By combining the proluminescent caspase-3 substrate, Z-DEVD-aminoluciferin, with a stabilized luciferase in a homogeneous format, the authors developed an assay that is significantly faster and more sensitive than fluorescent caspase-3 assays. The assay has a single-step format, in which protease cleavage of the substrate and luciferase oxidation of the aminoluciferin occurs simultaneously. Because these processes are coupled, they rapidly achieve steady state to maintain stable luminescence for several hours. Maximum sensitivity is attained when this steady state occurs; consequently, this coupled-enzyme system results in a very rapid assay. The homogeneous format inherently removes trace contamination by free aminoluciferin, resulting in extremely low background and yielding exceptionally high signal-to-noise ratios and excellent Z′ factors. Another advantage of a luminescent format is that it avoids problems of cell autofluorescence or fluorescence interference that can be associated with synthetic chemical and natural product libraries. This bioluminescent, homogeneous format should be widely applicable to other protease assays. (Journal of Biomolecular Screening 2005:137-148)

A broad-spectrum fluorescence-based peptide library for the rapid identification of protease substrates

PROTEOMICS, 2006

Identification of peptide substrates for proteases can be a major undertaking. To overcome issues such as feasibility and deconvolution, associated with large peptide libraries, a 'small but smart' generic fluorescence resonance energy transfer rapid endopeptidase profiling library (REPLi) was synthesised as a tool for rapidly identifying protease substrates. Within a tripeptide core, flanked by Gly residues, similar amino acids were paired giving rise to a relatively small library of 3375 peptides divided into 512 distinct pools each containing only 8 peptides. The REPLi was validated with trypsin, pepsin, the matrix metalloprotease (MMP)-12 and MMP-13 and calpains-1 and -2. In the case of calpain-2, a single iteration step involving LC-MS, provided the definitive residue specificity from which a highly sensitive fluorogenic substrate, (FAM)-Gly-Gly-Gly-Gln-Leu-Tyr-Gly-Gly-DPA-Arg-Arg-Lys-(TAMRA), was then designed. The thorough validation of this 'small but smart' peptide library with representatives from each of the four mechanistic protease classes indicates that the REPLi will be useful for the rapid identification of substrates for multiple proteases.