Field methods for sampling tree height for tropical forest biomass estimation (original) (raw)

Re-evaluation of individual diameter: Height allometric models to improve biomass estimation of tropical trees

Ecological Applications, 2016

Accurate estimation of tree biomass is necessary to provide realistic values of the carbon stored in the terrestrial biosphere. A recognized source of errors in tree aboveground biomass (AGB) estimation is introduced when individual tree height values (H) are not directly measured but estimated from diameter at breast height (DBH) using allometric equations. In this paper, we evaluate the performance of 12 alternative DBH : H equations and compare their effects on AGB estimation for three tropical forests that occur in contrasting climatic and altitudinal zones. We found that fitting a three-parameter Weibull function using data collected locally generated the lowest errors and bias in H estimation, and that equations fitted to these data were more accurate than equations with parameters derived from the literature. For computing AGB, the introduced error values differed notably among DBH : H allometric equations, and in most cases showed a clear bias that resulted in either over-or under-estimation of AGB. Fitting the three-parameter Weibull function minimized errors in AGB estimates in our study and we recommend its widespread adoption for carbon stock estimation. We conclude that many previous studies are likely to present biased estimates of AGB due to the method of H estimation.

Tree height and tropical forest biomass estimation

Biogeosciences, 2013

Tropical forests account for approximately half of above-ground carbon stored in global vegetation. However, uncertainties in tropical forest carbon stocks remain high because it is costly and laborious to quantify standing carbon stocks. Carbon stocks of tropical forests are determined using allometric relations between tree stem diameter and height and biomass. Previous work has shown that the inclusion of height in biomass allometries, compared to the sole use of diameter, significantly improves biomass estimation accuracy. Here, we evaluate the effect of height measurement error on biomass estimation and we evaluate the accuracy of recently published diameter-height allometries at four areas within the Brazilian Amazon. As no destructive sample of biomass was available at these sites, reference biomass values were based on allometries. We found that the precision of individual tree height measurements ranged from 3 to 20 % of total height. This imprecision resulted in a 5-6 % uncertainty in biomass when scaled to 1 ha transects. Individual height measurement may be replaced with existing regional and global height allometries. However, we recommend caution when applying these relations. At Tapajos National Forest in the Brazilian state of Pará, using the pantropical and regional allometric relations for height resulted in site biomass 21 % and 25 % less than reference values. At the other three study sites, the pantropical equation resulted in errors of less that 2 %, and the regional allometry produced errors of less than 12 %. As an alternative to measuring all tree heights or to using regional and pantropical relations, we recommend measuring height for a well-distributed sample of about 100 trees per site. Following this methodology, 95 % confidence intervals of transect biomass were constrained to within 4.5 % on average when compared to reference values.

Improved allometric models to estimate the aboveground biomass of tropical trees

2014

Terrestrial carbon stock mapping is important for the successful implementation of climate change mitigation policies. Its accuracy depends on the availability of reliable allometric models to infer oven-dry aboveground biomass of trees from census data. The degree of uncertainty associated with previously published pantropical aboveground biomass allometries is large. We analyzed a global database of directly harvested trees at 58 sites, spanning a wide range of climatic conditions and vegetation types (4004 trees ≥ 5 cm trunk diameter). When trunk diameter, total tree height, and wood specific gravity were included in the aboveground biomass model as covariates, a single model was found to hold across tropical vegetation types, with no detectable effect of region or environmental factors. The mean percent bias and variance of this model was only slightly higher than that of locally fitted models. Wood specific gravity was an important predictor of aboveground biomass, especially when including a much broader range of vegetation types than previous studies. The generic tree diameter-height relationship depended linearly on a bioclimatic stress variable E, which compounds indices of temperature variability, precipitation variability, and drought intensity. For cases in which total tree height is unavailable for aboveground biomass estimation, a pantropical model incorporating wood density, trunk diameter, and the variable E outperformed previously published models without height. However, to minimize bias, the development of locally derived diameter-height relationships is advised whenever possible. Both new allometric models should contribute to improve the accuracy of biomass assessment protocols in tropical vegetation types, and to advancing our understanding of architectural and evolutionary constraints on woody plant development.

Tree allometry and improved estimation of carbon stocks and balance in tropical forests

Oecologia, 2005

Tropical forests hold large stores of carbon, yet uncertainty remains regarding their quantitative contribution to the global carbon cycle. One approach to quantifying carbon biomass stores consists in inferring changes from long-term forest inventory plots. Regression models are used to convert inventory data into an estimate of aboveground biomass (AGB). We provide a critical reassessment of the quality and the robustness of these models across tropical forest types, using a large dataset of 2,410 trees ‡ 5 cm diameter, directly harvested in 27 study sites across the tropics. Proportional relationships between aboveground biomass and the prod-uct of wood density, trunk cross-sectional area, and total height are constructed. We also develop a regression model involving wood density and stem diameter only. Our models were tested for secondary and oldgrowth forests, for dry, moist and wet forests, for lowland and montane forests, and for mangrove forests. The most important predictors of AGB of a tree were, in decreasing order of importance, its trunk diameter, wood specific gravity, total height, and forest type (dry, moist, or wet). Overestimates prevailed, giving a bias of 0.5-6.5% when errors were averaged across all stands. Our regression models can be used reliably to predict aboveground tree biomass across a broad range of tropical forests. Because they are based on an unprecedented dataset, these models should improve the quality Electronic Supplementary Material Supplementary material is available for this article at http://dx.of tropical biomass estimates, and bring consensus about the contribution of the tropical forest biome and tropical deforestation to the global carbon cycle.

Feldpausch, T. R., et al. (2010): Height-diameter allometry of tropical forest trees, Biogeosciences Discuss., 7, 7727-7793, doi:10.5194/bgd-7-7727-2010

Biogeosciences

Tropical tree height-diameter (H:D) relationships may vary by forest type and region making large-scale estimates of above-ground biomass subject to bias if they ignore these differences in stem allometry. We have therefore developed a new global tropical forest database consisting of 39 955 concurrent H and D measurements encompassing 283 sites in 22 tropical countries. Utilising this database, our objectives were: 1. to determine if H:D relationships differ by geographic region and forest type (wet to dry forests, including zones of tension where forest and savanna overlap). 2. to ascertain if the H:D relationship is modulated by climate and/or forest structural characteristics (e.g. stand-level basal area, A). 3. to develop H:D allometric equations and evaluate biases to reduce error in future local-to-global estimates of tropical forest biomass. Annual precipitation coefficient of variation (PV), dry season length (SD), and mean annual air temperature (TA) emerged as key drivers...

Tree height integrated into pan-tropical forest biomass estimates

2012

Aboveground tropical tree biomass and carbon storage estimates commonly ignore tree height (H ). We estimate the effect of incorporating H on tropics-wide forest biomass estimates in 327 plots across four continents using 42 656 H and diameter measurements and harvested trees from 20 sites to answer the following questions:

Shifts in tree allometry in a tropical dry forest: implications for above-ground biomass estimation

Botanical Sciences, 2019

Background: Accurate estimations of aboveground biomass (AGB) based on allometric models are needed to implement climate-change mitigation strategies. However, allometry can change with tree size.Questions: Does allometry in a tropical dry forest change with tree size? Does combining different allometric equations provide better AGB estimates than using a single equation?Study site and dates: San Agustín Ejido, Yucatán, México, 2016.Methods: Forty-seven trees of 18 species with 2.5 to 41.5 cm in diameter at breast height (DBH) were sampled. Stems and branches were sectioned, and samples were dried and weighed to estimate tree AGB. Segmented linear regression was used to evaluate changes in allometry between DBH, height and AGB. Different equations were tested for each size category identified, and the best models and model-combinations selected.Results: A shift in the AGB-height relationship was found, defining two tree-size categories (2.5-9.9 cm and ≥ 10 cm in DBH), with the infle...

Predicting tree heights for biomass estimates in tropical forests

Biogeosciences Discussions, 2013

The recent development of REDD+ mechanisms requires reliable estimation of carbon stocks, especially in tropical forests that are particularly threatened by global changes. Even though tree height is a crucial variable for computing aboveground forest biomass (AGB), it is rarely measured in large-scale forest censuses because it requires extra effort. Therefore, tree height has to be predicted with height models.

Tree height integrated into pan-tropical forest biomass estimates (Discussion)

2012

Above-ground tropical tree biomass and carbon storage estimates commonly ignore tree height. We estimate the effect of incorporating height (H) on forest biomass estimates using 37 625 concomitant H and diameter measurements (n = 327 plots) and 1816 harvested trees (n = 21 plots) tropics-wide to answer the following questions: 1. For trees of known biomass (from destructive harvests) which H-model form and geographic scale (plot, region, and continent) most reduces biomass estimate uncertainty? 2. How much does including H relationship estimates derived in (1) reduce uncertainty in biomass estimates across 327 plots spanning four continents? 3. What effect does the inclusion of H in biomass estimates have on plot-and continental-scale forest biomass estimates? The mean relative error in biomass estimates of the destructively harvested trees was half (mean 0.06) when including H, compared to excluding H (mean 0.13). The powerand Weibull-H asymptotic model provided the greatest reduction in uncertainty, with the regional Weibull-H model preferred because it reduces uncertainty in smaller-diameter classes that contain the bulk of biomass per hectare in most forests. Propagating the relationships from destructively harvested tree biomass to each of the 327 plots from across the tropics shows errors are reduced from 41.8 Mg ha −1 (range 6.6 to 112.4) to 8.0 Mg ha −1 (−2.5 to 23.0) when including H. For all plots, above-ground live biomass was 52.2±17.3 Mg ha −1 lower when including H estimates (13 %), with the greatest reductions in estimated biomass in Brazilian Shield forests and relatively no change in the Guyana Shield, central Africa and southeast Asia. We show fundamentally different stand structure across the four forested tropical continents, which affects biomass reductions due to H. African forests store a greater portion of total biomass in largediameter trees and trees are on average larger in diameter. This contrasts to forests 2571 Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | on all other continents where smaller-diameter trees contain the greatest fractions of total biomass. After accounting for variation in H, total biomass per hectare is greatest in Australia, the Guyana Shield, and Asia and lowest in W. Africa, W. Amazonia, and the Brazilian Shield (descending order). Thus, if closed canopy tropical forests span 1668 million km 2 and store 285 Pg C, then the overestimate is 35 Pg C if H is ignored, and the sampled plots are an unbiased statistical representation of all tropical forest in terms of biomass and height factors. Our results show that tree H is an important allometric factor that needs to be included in future forest biomass estimates to reduce error in estimates of pantropical carbon stocks and emissions due to deforestation.

Height-diameter allometry of tropical forest trees

Biogeosciences, 2011

Tropical tree height-diameter (H: D) relationships may vary by forest type and region making large-scale estimates of above-ground biomass subject to bias if they ignore these differences in stem allometry. We have therefore developed a new global tropical forest database consisting of 39 955 concurrent H and D measurements encompassing 283 sites in 22 tropical countries. Utilising this database, our objectives were: 1. to determine if H: D relationships differ by geographic region and forest type (wet to dry forests, including ...