Evidence of reverse development in Leptomedusae (Cnidaria, Hydrozoa): the case of Laodicea undulata (Forbes and Goodsir 1851) (original) (raw)
Related papers
Loss of metagenesis and evolution of a parasitic life style in a group of open-ocean jellyfish
Molecular Phylogenetics and Evolution, 2018
Loss or stark reduction of the free-swimming medusa or jellyfish stage is common in the cnidarian class Hydrozoa. In the hydrozoan clade Trachylina, however, many species do not possess a sessile polyp or hydroid stage. Trachylines inhabiting freshwater and coastal ecosystems (i.e., Limnomedusae) possess a metagenetic life cycle involving benthic, sessile polyp and free-swimming medusa. In contrast, the paradigm is that open ocean inhabiting, oceanic trachylines (in the orders Narcomedusae and Trachymedusae) develop from zygote to medusa via a free-swimming larva, forgoing the polyp stage. In some open ocean trachylines, development includes a sessile stage that is an ecto-or endoparasite of other oceanic organisms. We expand the molecular-based phylogenetic hypothesis of trachylines significantly, increasing taxon and molecular marker sampling. Using this comprehensive phylogenetic hypothesis in conjunction with character state reconstructions we enhance understanding of the evolution of life cycles in trachyline hydrozoans. We find that the polyp stage was lost at least twice independently, concurrent with a transition to an oceanic life style. Further, a sessile, polypoid parasitic stage arose once, rather than twice as current classification would imply, in the open ocean inhabiting Narcomedusae. Our results also support the hypothesis that interstitial species of the order Actinulida are directly descended from direct developing, oceanic trachylines.
Life cycle strategy, species richness and distribution in marine Hydrozoa (Cnidaria: Medusozoa)
Journal of Biogeography, 2010
Free-living marine invertebrates occupy one of two environments as adults -the pelagos or the benthos. Many benthic animals nevertheless occupy the pelagos for a short period of time at some stage in their life, be it as gametes or developing larvae. These temporary components of the plankton are referred to as meroplankton, whilst organisms that remain in the plankton for the full duration of their life are known as holoplankton. The length of time that a life cycle stage is resident in the plankton is related to the trophic mode of that stage. Taxa with lecithotrophic larvae or non-feeding life cycle stages tend to be pelagic for relatively short periods of time, and dispersal is comparatively limited (e.g. Scheltema, 1986). Others have planktotrophic larvae that feed whilst in the plankton, and these may be resident for prolonged periods of time during which they undergo extensive and sometimes complex development and can disperse over much greater distances (e.g. .
Scientific Reports
Ecologists and evolutionary biologists have been looking for the key(s) to the success of scyphomedusae through their long evolutionary history in multiple habitats. Their ability to generate young medusae (ephyrae) via two distinct reproductive strategies, strobilation or direct development from planula into ephyra without a polyp stage, has been a potential explanation. In addition to these reproductive modes, here we provide evidence of a third ephyral production which has been rarely observed and often confused with direct development from planula into ephyra. Planulae of Aurelia relicta Scorrano et al. 2017 and Cotylorhiza tuberculata (Macri 1778) settled and formed fully-grown polyps which transformed into ephyrae within several days. In distinction to monodisk strobilation, the basal polyp of indirect development was merely a non-tentaculate stalk that dissolved shortly after detachment of the ephyra. We provide a fully detailed description of this variant that increases repr...
2022
The fried egg jellyfish Phacellophora camtschatica (senso lato) is a morphologically peculiar and conspicuous species occurring mostly in the cold waters of the North Pacific. It is less common in the cold waters of the NW Atlantic, and occasionally has been reported in the Mediterranean, Arctic, East and South Pacific, and E, SW and NE Atlantic. However, sightings of this scyphozoan jellyfish have intensified during the past two to three decades in Macaronesia, the Iberian Peninsula and the Mediterranean. These jellyfish are known to be voracious predators of other jellies, but also of other taxa, including fish of commercial interest. Therefore, Phacellophora aggregations may threaten local fisheries, aquaculture, and local biodiversity structuring. We report the first known occurrences of Phacellophora in the Azores Islands, which apparently become more frequent in recent years of the past decade. We confirm, through DNA barcoding of COI and 16S mitochondrial markers, the genetic identity of Phacellophora occurring in the Azores (NE Atlantic). We reveal, with COI sequence data, three (potentially four) cryptic species within the Phacellophora camtschatica complex. Two Phacellophora species co-occur in the North Pacific. In the North Atlantic (and possibly in the Mediterranean) one or two distinct species exist. Three nominal species of the genus that are currently synonymized, with type localities in the N Pacific, NW Atlantic, and the Mediterranean, need reassessment. The morphotypes previously defined for the four putative species names given for Phacellophora might be eventually differentiated by the number and disposition of the marginal lappets of umbrellae. This morphologic character has to be further inspected in vouchers of the four genetic lineages of Phacellophora, to decide between the description of new species, and the resurrection of junior synonyms through the designation of neotypes with DNA Barcodes, to validate the identity of the cryptic taxa detected. More haplotype sampling is necessary across the distribution of the genus to further investigate the genetic diversity and phylogeographic history of Phacellophora. The high genetic relatedness of Phacellophora from the cold NW Atlantic and the subtropical shores of the Azores, revealed by 16S and COI sequence data, suggests a recent invasion, in terms of geologic time, of the temperate waters of the NE Atlantic (and possibly of the Mediterranean). The medusivorous habits of Phacellophora, and especially its predation on the mauve stinger (Pelagia spp.) which frequently blooms in How to cite this article Moura CJ, Ropa N, Magalhães BI, Gonçalves JM. 2022. Insight into the cryptic diversity and phylogeography of the peculiar fried egg jellyfish Phacellophora (Cnidaria, Scyphozoa, Ulmaridae).
Hydrobiologia, 2007
It is becoming increasingly evident that jellyfish (Cnidaria: Scyphozoa) play an important role within marine ecosystems, yet our knowledge of their seasonality and reproductive strategies is far from complete. Here, we explore a number of life history hypotheses for three common, yet poorly understood scyphozoan jellyfish (Rhizostoma octopus; Chrysaora hysoscella; Cyanea capillata) found throughout the Irish and Celtic Seas. Specifically, we tested whether (1) the bell diameter/wet weight of stranded medusae increased over time in a manner that suggested a single synchronised reproductive cohort; or (2) whether the range of sizes/weights remained broad throughout the stranding period suggesting the protracted release of ephyrae over many months. Stranding data were collected at five sites between 2003 and 2006 (n = 431 surveys; n = 2401 jellyfish). The relationship between bell diameter and wet weight was determined for each species (using fresh specimens collected at sea) so that estimates of wet weight could also be made for stranded individuals. For each species, the broad size and weight ranges of stranded jellyfish implied that the release of ephyrae may be protracted (albeit to different extents) in each species, with individuals of all sizes present in the water column during the summer months. For R. octopus, there was a general increase in both mean bell diameter and wet weight from January through to June which was driven by an increase in the variance and overall range of both variables during the summer. Lastly, we provide further evidence that rhizostome jellyfish may over-wintering as pelagic medusa which we hypothesise may enable them to capitalise on prey available earlier in the year.
Hydrocoryne iemanja (Cnidaria), a new species of Hydrozoa with unusual mode of asexual reproduction
Journal of the …, 2009
Hydrocoryne iemanja sp. nov. was found in an aquarium, growing on rhodoliths of coralline algae collected on the southeastern coast of Brazil (20840 0 S 4082 0 W). The colonies were reared through maturity in the laboratory. Each colony had up to 7 sessile, long and thin monomorphic zooids, very extensible and flexible, arising from a chitinous, hard dark-brown plate with minute spines. Medusae budded from near the basal part of hydrocaulus, and were released in immature condition, acquiring fully developed interradial gonads 5 -7 days after release. Asexual reproduction by longitudinal fission was observed on the hydrocaulus of the polyps, both for those in normal condition and those with injuries. Fission started at the oral region, extending aborally, with a new hard plate formed in the basal part of hydrocaulus. When fission reached the new hard plate, the new polyp detached, becoming free and sinking to the bottom, starting a new colony. Detached polyps were morphologically indistinguishable from other polyps, being able to produce medusae. Mother and daughter polyps undertook subsequent fissions. This mode of longitudinal fission is distinct from other modes of longitudinal fission, a process known for a few species of cnidarians. Further studies of this process may shed light on the understanding of the evolutionary pathways in Cnidaria and animals. Hydrocoryne iemanja sp. nov. is distinguishable from its two congeners by the distinct marginal tentacles of the medusae-short and with a median nematocyst knob-an unambiguous character useful even for the identification of newly liberated medusae.
Pelagia benovici sp. nov. (Cnidaria, Scyphozoa): a new jellyfish
in the Mediterranean Sea
Zootaxa, 2014
A bloom of an unknown semaestome jellyfish species was recorded in the North Adriatic Sea from September 2013 to early 2014. Morphological analysis of several specimens showed distinct differences from other known semaestome species in the Mediterranean Sea and unquestionably identified them as belonging to a new pelagiid species within genus Pelagia. The new species is morphologically distinct from P. noctiluca, currently the only recognized valid species in the genus, and from other doubtful Pelagia species recorded from other areas of the world. Molecular analyses of mitochondrial cytochrome c oxidase subunit I (COI) and nuclear 28S ribosomal DNA genes corroborate its specific distinction from P. noctiluca and other pelagiid taxa, supporting the monophyly of Pelagiidae. Thus, we describe Pelagia benovici sp. nov.
Life Cycle Reversal in Aurelia sp.1 (Cnidaria, Scyphozoa
The genus Aurelia is one of the major contributors to jellyfish blooms in coastal waters, possibly due in part to hydroclimatic and anthropogenic causes, as well as their highly adaptive reproductive traits. Despite the wide plasticity of cnidarian life cycles, especially those recognized in certain Hydroza species, the known modifications of Aurelia life history were mostly restricted to its polyp stage. In this study, we document the formation of polyps directly from the ectoderm of degenerating juvenile medusae, cell masses from medusa tissue fragments, and subumbrella of living medusae. This is the first evidence for back-transformation of sexually mature medusae into polyps in Aurelia sp.1. The resulting reconstruction of the schematic life cycle of Aurelia reveals the underestimated potential of life cycle reversal in scyphozoan medusae, with possible implications for biological and ecological studies.