New Method for Prediction of Loads in Steel Reinforced Soil Walls (original) (raw)

A new working stress method for prediction of reinforcement loads in geosynthetic walls

Canadian Geotechnical Journal, 2003

Proper estimation of soil reinforcement loads and strains is key to accurate internal stability design of reinforced soil structures. Current design methodologies use limit equilibrium concepts to estimate reinforcement loads for internal stability design of geosynthetic and steel reinforced soil walls. For geosynthetic walls, however, it appears that these methods are excessively conservative based on the performance of geosynthetic walls to date. This paper presents a new method, called the K-stiffness method, that is shown to give more accurate estimates of reinforcement loads, thereby reducing reinforcement quantities and improving the economy of geosynthetic walls. The paper is focused on the new method as it applies to geosynthetic walls constructed with granular (noncohesive, relatively low silt content) backfill soils. A database of 11 full-scale geosynthetic walls was used to develop the new design methodology based on working stress principles. The method considers the sti...

Calibration concepts for load and resistance factor design (LRFD) of reinforced soil walls

Canadian Geotechnical Journal, 2008

Reliability-based design concepts and their application to load and resistance factor design (LRFD or limit states design (LSD) in Canada) are well known, and their adoption in geotechnical engineering design is now recommended for many soil–structure interaction problems. Two important challenges for acceptance of LRFD for the design of reinforced soil walls are (i) a proper understanding of the calibration methods used to arrive at load and resistance factors, and (ii) the proper interpretation of the data required to carry out this process. This paper presents LRFD calibration principles and traces the steps required to arrive at load and resistance factors using closed-form solutions for one typical limit state, namely pullout of steel reinforcement elements in the anchorage zone of a reinforced soil wall. A unique feature of this paper is that measured load and resistance values from a database of case histories are used to develop the statistical parameters in the examples. Th...

Development of the K -stiffness method for geosynthetic reinforced soil walls constructed with c -ϕ soils

Canadian Geotechnical Journal, 2007

In this paper the K-stiffness method is extended to the case of c-ϕ soils using data obtained from a total of nine new case studies – six from Japan and three from the USA. A common feature in this new data set is that the walls were all constructed with a vertical face using backfill soils with a range of fines content. The walls varied widely with respect to facing type. This new data set together with previously published data for vertical walls is now used to isolate the effect of soil cohesion on reinforcement loads within the framework of the original K-stiffness method. The new data set is used to calibrate a modified K-stiffness method equation that includes a cohesion influence factor. The modified K-stiffness method is demonstrated to quantitatively improve the estimate of the magnitude and distribution of reinforcement loads for internal stability design of vertical-faced geosynthetic reinforced soil walls with c-ϕ soil backfills when compared to the current American Asso...