On the regulation of minimum mid-tropospheric temperatures in the Arctic (original) (raw)

Abstract

Observations indicate a minimum mid-tropospheric Arctic winter temperature of about À45°C at 500 hPa. This minimum temperature coincides with that predicted for moist adiabatic ascent over a sea surface near its salinity-adjusted freezing point. NCAR/NCEP Reanalysis data show that convective heating maxima averaged over the 50-70°N latitude band coincide both in longitude and altitude with total horizontal energy flux maxima entering the Arctic, indicating the significance of convection over open water on the winter Arctic energy budget. NCAR CCM single column model experiments simulating convective warming of a cold airmass moving over open water and radiative cooling as it moves again over cold land/sea ice support the hypothesis that the À45°C threshold can be maintained for 10 -14 days after convective warming occurs. We speculate on the implications of this regulatory mechanism on surface temperatures.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (19)

  1. Chase, T. N., B. Herman, R. A. Pielke Sr., X. Zeng, and M. Leuthold (2002), A proposed mechanism for the regulation of minimum mid-tropo- spheric temperatures in the Arctic, J. Geophys. Res., 107(D14), 4193, doi:10.1029/2001JD001425.
  2. Curry, J. (1983), On the Formation of Continental Polar Air, J. Applied Meteorol., 40, 2278 -2292.
  3. Fultz, D. (1986), Residence Times and Other Time-Scales Associated with Norwegian Air Mass Ideas. Namias Symposium, Scripps Institution of Oceanography, Reference Series, 86-17, 82 -102.
  4. Grell, G. A. (1993), Prognostic Evaluation of Assumptions Used by Cumulus Parameterizations, Mon. Wea. Rev., 12, 764 -787.
  5. Hack, J. J. (1994), Parameterization of moist convection in the National Center fro Atmospheric Research community climate model (CCM2), J. Geophys. Res., 99(D3), 5551 -5568.
  6. Hack, J. J., J. A. Pedretti, and J. C. Petch (1999), SCCM User's guide, Version 1.2.
  7. IPCC (2001), Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the ''Intergovern- mental Panel on Climate Change [Houghton, J. T., Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell, and C. A. Johnson] Cambridge Univ. Press, Cambridge, United Kingdom and New York, NY, USA, 99 -123, 525 -575.
  8. Kahl, J. D., M. Jansen, and M. A. Pulrang (2001), A. Fifty-year record of North Polar Temperatures Shows Warming, Eos, 82(1), 1-1.
  9. Kalnay, E., M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin, M. Iredell, S. Saha, G. White, J. Woollen, Y. Zhu, A. Leetmaa, B. Reynolds, M. Chelliah, W. Ebisuzaki, W. Higgins, J. Janowiak, K. C. Mo, C. Ropelewski, J. Wang, Jenne, Roy, Joseph, and Dennis (1996), The NCEP/NCAR 40-Year Reanalysis Project, Bull. Am. Meteorol. Soc., 77, 437 -471.
  10. Michaels, P. J., P. C. Knappenberger, R. C. Balling Jr., and R. E. Davis (2000), Observed warming in cold anticyclones, Clim. Res., 14, 1-6.
  11. Overland, J. E., and P. Turet (1994), Variability of the Atmospheric Energy Flux across 70°N Computed from the GFDL Data Set, The polar Oceans and Their Role in Shaping the Global Environment, geophysical mono- graph, AGU, 313 -325.
  12. Polyakov, I. V., G. V. Alekseev, R. V. Bekryaev, U. Bhatt, R. L. Colony, M. A. Johnson, V. A. Karklin, A. P. Makshtas, D. Walsh, and A. V. Yulin (2002), Observationally base assessment of polar amplification of global warming, Geophys. Res. Lett., 29(18), 1878, doi:10.1029/ 2001GL011111.
  13. Przybylak, R. (2002), Changes in seasonal and annual high-frequency air temperature variability in the Arctic from 1951 to 1990, Int. J. Climatol., 22, 1017 -1032.
  14. Serreze, M. C., J. E. Walsh, F. S. Chapin III, T. Osterkamp, M. Dyurgerov, V. Romanovsky, W. C. Oechel, J. Morison, T. Zhang, and R. G. Barry (2000), Observational evidence of recent change in the northern high- altitude environment, Clim. Change, 46, 159 -207.
  15. Slingo, J. J. (1987), The development and verification of a cloud prediction scheme for the ECMWF model, Q. J. R. Meteorol. Soc., 113, 899 -927.
  16. Tiedtke, M. (1983), The sensitivity of the time-mean large-scale flow to cumulus convection in the ECMWF model. ECMWF Workshop on Con- vection in Large-Scale Models, 28 November -1 December 1983, Read- ing, England, 297 -316.
  17. Traub, W. A., K. W. Jucks, D. G. Johnson, and K. V. Chance (1995), Subsidence of the Arctic stratosphere determined from thermal emission of hydrogen fluoride, J. Geophys. Res., 100(D6), 11,261 -11,267.
  18. Zhang, G. J., and N. A. McFarlane (1995), Sensitivity of climate simula- tions to the parameterization of cumulus convection in the Canadian Climate Centre Circulation Model, Atmos.-Ocean, 33, 407 -446.
  19. ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ À T. N. Chase, R. G. Barry, M. C. Serreze, and M. Tsukernik, CIRES, National Snow and Ice Data Center (NSIDC), University of Colorado, Campus Box 449, Boulder, CO 80309-0449, USA. (maria.tsukernik@ colorado.edu) B. Herman and X. Zeng, Department of Atmospheric Sciences, University of Arizona, Tucson, AZ, USA. R. Pielke Sr., Department of Atmospheric Sciences, Colorado State University, Ft Collins, CO, USA.