Brain states govern the spatio-temporal dynamics of resting state functional connectivity (original) (raw)
Related papers
Journal of neurophysiology, 2017
Complex spatiotemporal changes of slow spontaneous activity occur in the form of propagating waves in the cortex, leading to the transient formation of a specific activation topography, followed by a transition in the topography. The topographies resemble the stimulation-induced activation patterns and the underlying structural projections, suggesting that they contain motifs of task-related activation. However, little is known about how propagation-mediated transitions between topographies are structured in terms of functional connectivity. Therefore, we investigated whether specific topographies or regions are associated with transitions involving long-range connections and hub modulation. We hypothesized that the activity level of the default mode network (DMN) at a given topography would affect the pattern of upcoming transitions, since high activity levels of the DMN are a distinct feature of the brain at rest. Using mesoscale voltage-sensitive dye imaging in the cortex of ligh...
Cortex-wide BOLD fMRI activity reflects locally-recorded slow oscillation-associated calcium waves
eLife
Spontaneous slow oscillation-associated slow wave activity represents an internally generated state which is characterized by alternations of network quiescence and stereotypical episodes of neuronal activity - slow wave events. However, it remains unclear which macroscopic signal is related to these active periods of the slow wave rhythm. We used optic fiber-based calcium recordings of local neural populations in cortex and thalamus to detect neurophysiologically defined slow calcium waves in isoflurane anesthetized rats. The individual slow wave events were used for an event-related analysis of simultaneously acquired whole-brain BOLD fMRI. We identified BOLD responses directly related to onsets of slow calcium waves, revealing a cortex-wide BOLD correlate: the entire cortex was engaged in this specific type of slow wave activity. These findings demonstrate a direct relation of defined neurophysiological events to a specific BOLD activity pattern and were confirmed for ongoing slo...
Neuronal origin of the temporal dynamics of spontaneous BOLD activity correlation
2017
Resting-state functional connectivity (FC) has become a major fMRI method to study network organization of human brains. There has been recent interest in the temporal fluctuations of FC calculated using short time windows (“dynamic FC”) because this method could provide information inaccessible with conventional “static” FC, which is typically calculated using the entire scan lasting several tens of minutes. Although multiple studies have revealed considerable temporal fluctuations in FC, it is still unclear whether the fluctuations of FC measured in hemodynamics reflect the dynamics of underlying neural activity. We addressed this question using simultaneous imaging of neuronal calcium and hemodynamic signals in mice and found coordinated temporal dynamics of calcium FC and hemodynamic FC measured in the same short time windows. Moreover, we found that variation in transient neuronal coactivation patterns (CAPs) was significantly related to temporal fluctuations of sliding window ...
Mouse optical imaging for understanding resting-state functional connectivity in human fMRI
Communicative & Integrative Biology, 2018
Resting-state functional connectivity (FC), which measures the temporal correlation of spontaneous hemodynamic activity between distant brain areas, is a widely accepted method in functional magnetic resonance imaging (fMRI) to assess the connectome of healthy and diseased human brains. A common assumption underlying FC is that it reflects the temporal structure of large-scale neuronal activity that is converted into large-scale hemodynamic activity. However, direct observation of such relationship has been difficult. In this commentary, we describe our recent progress regarding this topic. Recently, transgenic mice that express a genetically encoded calcium indicator (GCaMP) in neocortical neurons are enabling the optical recording of neuronal activity in large-scale with high spatiotemporal resolution. Using these mice, we devised a method to simultaneously monitor neuronal and hemodynamic activity and addressed some key issues related to the neuronal basis of FC. We propose that many important questions about human resting-state fMRI can be answered using GCaMP expressing transgenic mice as a model system.
Modulatory interactions of resting-state brain functional connectivity
PloS one, 2013
The functional brain connectivity studies are generally based on the synchronization of the resting-state functional magnetic resonance imaging (fMRI) signals. Functional connectivity measures usually assume a stable relationship over time; however, accumulating studies have reported time-varying properties of strength and spatial distribution of functional connectivity. The present study explored the modulation of functional connectivity between two regions by a third region using the physiophysiological interaction (PPI) technique. We first identified eight brain networks and two regions of interest (ROIs) representing each of the networks using a spatial independent component analysis. A voxel-wise analysis was conducted to identify regions that showed modulatory interactions (PPI) with the two ROIs of each network. Mostly, positive modulatory interactions were observed within regions involved in the same system. For example, the two regions of the dorsal attention network revealed modulatory interactions with the regions related to attention, while the two regions of the extrastriate network revealed modulatory interactions with the regions in the visual cortex. In contrast, the two regions of the default mode network (DMN) revealed negative modulatory interactions with the regions in the executive network, and vice versa, suggesting that the activities of one network may be associated with smaller within network connectivity of the competing network. These results validate the use of PPI analysis to study modulation of resting-state functional connectivity by a third region. The modulatory effects may provide a better understanding of complex brain functions.
Journal of Neuroscience, 2013
Brain fluctuations at rest are not random but are structured in spatial patterns of correlated activity across different brain areas. The question of how resting-state functional connectivity (FC) emerges from the brain's anatomical connections has motivated several experimental and computational studies to understand structure-function relationships. However, the mechanistic origin of resting state is obscured by large-scale models' complexity, and a close structure-function relation is still an open problem. Thus, a realistic but simple enough description of relevant brain dynamics is needed. Here, we derived a dynamic mean field model that consistently summarizes the realistic dynamics of a detailed spiking and conductance-based synaptic large-scale network, in which connectivity is constrained by diffusion imaging data from human subjects. The dynamic mean field approximates the ensemble dynamics, whose temporal evolution is dominated by the longest time scale of the system. With this reduction, we demonstrated that FC emerges as structured linear fluctuations around a stable low firing activity state close to destabilization. Moreover, the model can be further and crucially simplified into a set of motion equations for statistical moments, providing a direct analytical link between anatomical structure, neural network dynamics, and FC. Our study suggests that FC arises from noise propagation and dynamical slowing down of fluctuations in an anatomically constrained dynamical system. Altogether, the reduction from spiking models to statistical moments presented here provides a new framework to explicitly understand the building up of FC through neuronal dynamics underpinned by anatomical connections and to drive hypotheses in task-evoked studies and for clinical applications.
Proceedings of the National Academy of Sciences of the United States of America, 2016
Resting-state functional connectivity (FC), which measures the correlation of spontaneous hemodynamic signals (HemoS) between brain areas, is widely used to study brain networks noninvasively. It is commonly assumed that spatial patterns of HemoS-based FC (Hemo-FC) reflect large-scale dynamics of underlying neuronal activity. To date, studies of spontaneous neuronal activity cataloged heterogeneous types of events ranging from waves of activity spanning the entire neocortex to flash-like activations of a set of anatomically connected cortical areas. However, it remains unclear how these various types of large-scale dynamics are interrelated. More importantly, whether each type of large-scale dynamics contributes to Hemo-FC has not been explored. Here, we addressed these questions by simultaneously monitoring neuronal calcium signals (CaS) and HemoS in the entire neocortex of mice at high spatiotemporal resolution. We found a significant relationship between two seemingly different t...
Human Brain Mapping, 2008
Recent studies have demonstrated large amplitude spontaneous fluctuations in functional-MRI (fMRI) signals in humans in the resting state. Importantly, these spontaneous fluctuations in blood-oxygenation-level-dependent (BOLD) signal are often synchronized over distant parts of the brain, a phenomenon termed functional-connectivity. Functional-connectivity is widely assumed to reflect interregional coherence of fluctuations in activity of the underlying neuronal networks. Despite the large body of human imaging literature on spontaneous activity and functional-connectivity in the resting state, the link to underlying neural activity remains tenuous. Through simultaneous fMRI and intracortical neurophysiological recording, we demonstrate correlation between slow fluctuations in BOLD signals and concurrent fluctuations in the underlying locally measured neuronal activity. This correlation varied with time-lag of BOLD relative to neuronal activity, resembling a traditional hemodynamic response function with peaks at 6 s lag of BOLD signal. The correlations were reliably detected when the neuronal signal consisted of either the spiking rate of a small group of neurons, or relative power changes in the multi-unit activity band, and particularly in the local field potential gamma band. Analysis of correlation between the voxel-by-voxel fMRI time-series and the neuronal activity measured within one cortical site showed patterns of correlation that slowly traversed cortex. BOLD fluctuations in widespread areas in visual cortex of both hemispheres were significantly correlated with neuronal activity from a single recording site in V1. To the extent that our V1 findings can be generalized to other cortical areas, fMRI-based functional-connectivity between remote regions in the resting state can be linked to synchronization of slow fluctuations in the underlying neuronal signals.
Journal of Neuroscience, 2014
Over the last decade, synchronized resting-state fluctuations of blood oxygenation level-dependent (BOLD) signals between remote brain areas [so-called BOLD resting-state functional connectivity (rs-FC)] have gained enormous relevance in systems and clinical neuroscience. However, the neural underpinnings of rs-FC are still incompletely understood. Using simultaneous positron emission tomography/ magnetic resonance imaging we here directly investigated the relationship between rs-FC and local neuronal activity in humans.
Resting-state functional connectivity of the rat brain
Magnetic Resonance in Medicine, 2008
Regional-specific average time courses of spontaneous fluctuations in blood oxygen level dependent (BOLD) MRI contrast at 9.4T in lightly anesthetized resting rat brain are formed, and correlation coefficients between time course pairs are interpreted as measures of connectivity. A hierarchy of regional pairwise correlation coefficients (RPCCs) is observed, with the highest values found in the thalamus and cortex, both intra-and interhemisphere, and lower values between cortex and thalamus. Independent sensory networks are distinguished by two methods: data driven, where task activation defines regions of interest (ROI), and hypothesis driven, where regions are defined by the rat histological atlas. Success in these studies is attributed in part to the use of medetomidine hydrochloride (Domitor) for anesthesia. Consistent results in two different rat-brain systems, the sensorimotor and visual, strongly support the hypothesis that resting-state BOLD fluctuations are conserved across mammalian species and can be used to map brain systems.