On high rank $ pi/3$ and 2pi/32 pi/32pi/3-congruent number elliptic curves (original) (raw)

On the high rank pi/3\pi/3pi/3 and 2pi/32\pi/32pi/3-congruent number elliptic curves

Andrej Dujella

arXiv (Cornell University), 2011

View PDFchevron_right

On the high rank π/3 and 2π/3- congruent number elliptic curves

Sajad Salami, Andrej Dujella

Rocky Mountain J. Math., 2014

View PDFchevron_right

Congruent number elliptic curves with rank at least two

Norbert Hungerbühler

arXiv (Cornell University), 2018

View PDFchevron_right

On The Rank Of Congruent Elliptic Curves

farzali izadi

2017

View PDFchevron_right

On the rank of elliptic curves coming from rational Diophantine triples

Julián Aguirre, Juan Carlos Peral, Andrej Dujella

View PDFchevron_right

Congruent Number Elliptic Curves Related to Integral Solutions of m2 = n2 + nl + n2

Norbert Hungerbühler

Journal of Integer Sequences, 2019

View PDFchevron_right

Rank Zero Quadratic Twists of Modular Elliptic Curves

Ken Ono

1996

View PDFchevron_right

On θ-congruent numbers on real quadratic number fields

Sajad Salami

Kodai Mathematical Journal, 2015

View PDFchevron_right

A search for high rank congruent number elliptic curves

Sajad Salami, Andrej Dujella

Journal of Integer Sequences, 2009

View PDFchevron_right

Ranks of twists of elliptic curves and Hilbert’s tenth problem

Barry Mazur

Inventiones mathematicae, 2010

View PDFchevron_right

The {\theta }$$-Congruent Number Elliptic Curves via Fermat-type Algorithms

Sajad Salami

Bulletin of the Brazilian Mathematical Society, New Series, 2020

View PDFchevron_right

An example of elliptic curve over Q with rank equal to 15

Andrej Dujella

PROCEEDINGS-JAPAN ACADEMY SERIES A …, 2002

View PDFchevron_right

#A10 Integers 19 (2019) Elliptic Curves Arising from the Triangular Numbers

Abhishek Juyal

2019

View PDFchevron_right

A Family of Elliptic Curves With Rank geq5\geq5geq5

kamran nabardi

View PDFchevron_right

A parametric family of elliptic curves

Andrej Dujella

ACTA ARITHMETICA-WARSZAWA-, 2000

View PDFchevron_right

Elliptic Curves of Type y2=x3−3pqx Having Ranks Zero and One

Jerico Bacani

Malaysian Journal of Mathematical Sciences

View PDFchevron_right

Some new families of positive-rank elliptic curves arising from Pythagorean triples

farzali izadi

Notes on Number Theory and Discrete Mathematics, 2018

View PDFchevron_right

The square-free sieve and the rank of elliptic curves

Barry Mazur

Journal of the American Mathematical Society, 1991

View PDFchevron_right

Elliptic Curves Satisfying the Birch and Swinnerton–Dyer Conjecture mod 3

Kevin James

Journal of Number Theory, 1999

View PDFchevron_right

A Family of Elliptic Curves With Rank ≥5

farzali izadi

2015

View PDFchevron_right

A family of elliptic curves of rank ≥ 4

kamran nabardi

Involve, a Journal of Mathematics

View PDFchevron_right

Elliptic Curves with positive rank and no integral points

Eleni Agathocleous

arXiv (Cornell University), 2023

View PDFchevron_right

The thera\therathera-congruent numbers elliptic curves via a Fermat-type theorem

Sajad Salami

2020

View PDFchevron_right

The -congruent numbers elliptic curves via a Fermat-type theorem

Sajad Salami

2020

View PDFchevron_right

On a Family Of Elliptic Curves With Positive Rank arising from Pythagorean Triples

farzali izadi

arXiv: Number Theory, 2010

View PDFchevron_right

On theta\thetatheta-congruent numbers on real quadratic number fields

Sajad Salami

Kodai Mathematical Journal

View PDFchevron_right

A geometric approach to elliptic curves with torsion groups mathbbZ/10mathbbZ\mathbb{Z}/10\mathbb{Z}mathbbZ/10mathbbZ, mathbbZ/12mathbbZ\mathbb{Z}/12\mathbb{Z}mathbbZ/12mathbbZ, mathbbZ/14mathbbZ\mathbb{Z}/14\mathbb{Z}mathbbZ/14mathbbZ, and mathbbZ/16mathbbZ\mathbb{Z}/16\mathbb{Z}mathbbZ/16mathbbZ

Norbert Hungerbühler, Maksym Voznyy, Lorenz Halbeisen

arXiv: Number Theory, 2021

View PDFchevron_right

Ranks of elliptic curves with prescribed torsion over number fields

Andrej Dujella

Int. Math. Res. Not. IMRN, 2014

View PDFchevron_right

On the Elliptic Curves of the Form y2=x3−pqxy^2 = x^3 − pqxy2=x3pqx

hassan daghigh

Iranian Journal of Mathematical Sciences and Informatics, 2015

View PDFchevron_right

A New Family Of Elliptic Curves With Positive Rank arising from Pythagorean Triples

farzali izadi

arXiv (Cornell University), 2010

View PDFchevron_right