Rubin-Bejerano, I., Mandel, S., Robzyk, K. & Kassir, Y. Induction of meiosis in Saccharomyces cerevisiae depends on conversion of the transcriptional represssor Ume6 to a positive regulator by its regulated association with the transcriptional activator Ime1. Mol. Cell. Biol. 16, 2518-2526 (original) (raw)

Induction of meiosis in Saccharomyces cerevisiae depends on conversion of the transcriptional represssor Ume6 to a positive regulator by its regulated association with the transcriptional activator Ime1

Molecular and Cellular Biology, 1996

The transcription of meiosis-specific genes, as well as the initiation of meiosis, in the budding yeast Saccharomyces cerevisiae depends on IME1. IME1 encodes a transcriptional activator which lacks known DNA binding motifs. In this study we have determined the mode by which Ime1 specifically activates the transcription of meiotic genes. We demonstrate that Ime1 is recruited to the promoters of meiotic genes by interacting with a DNA-binding protein, Ume6. This association between Ime1 and Ume6 depends on both starvation and the activity of a protein kinase, encoded by RIM11. In the absence of Ime1, Ume6 represses the transcription of meiotic genes. However, in the presence of Ime1, or when Ume6 is fused in frame to the Gal4 activation domain, Ume6 is converted from a repressor to an activator, resulting in the transcription of meiosis-specific genes and the formation of asci.

Ume6 Acts as a Stable Platform To Coordinate Repression and Activation of Early Meiosis-Specific Genes in Saccharomyces cerevisiae

Molecular and Cellular Biology, 2021

In response to nutrient starvation, the budding yeast Saccharomyces cerevisiae abandons mitotic proliferation and embarks on a differentiation process that leads through meiosis to the formation of haploid spores. This process is driven by cascading waves of meiosis-specific-gene expression. ABSTRACT In response to nutrient starvation, the budding yeast Saccharomyces cerevisiae abandons mitotic proliferation and embarks on a differentiation process that leads through meiosis to the formation of haploid spores. This process is driven by cascading waves of meiosis-specific-gene expression. The early meiosis-specific genes are repressed during mitotic proliferation by the DNA-binding protein Ume6 in combination with repressors Rpd3 and Sin3. The expression of meiosis-specific transcription factor Ime1 leads to activation of the early meiosis-specific genes. We investigated the stability and promoter occupancy of Ume6 in sporulating cells and determined that it remains bound to early me...

Positive control of yeast meiotic genes by the negative regulator UME6

Molecular and Cellular Biology, 1995

The yeast meiotic activator IME1 stimulates transcription of many early meiotic genes. These genes share a 5' sequence called URS1. URS1 sites function as repression sites in cells that lack IME1; we show here that URS1 sites are weak activation sequences in cells that express IME1. Repression through URS1 sites is known to depend upon the URS1-binding protein UME6. We have identified a UME6 allele (previously called rim16-12) that causes a defect in IME1-dependent activation of meiotic genes but not in repression through URS1 sites. In contrast, a ume6 null mutation causes defects in both IME1-dependent activation and in repression through URS1 sites. A LexA-UME6 fusion protein is an IME1-dependent transcriptional activator, whereas a LexA-UME6 fusion carrying the rim16-12 substitution cannot activate transcription. These findings argue that IME1 activates meiotic genes by converting UME6 from a negative regulator to a positive regulator; the rim16-12 mutant protein is defectiv...

Multiple and distinct activation and repression sequences mediate the regulated transcription of IME1, a transcriptional activator of meiosis-specific genes in Saccharomyces cerevisiae

Molecular and cellular biology, 1998

IME1 encodes a transcriptional activator required for the transcription of meiosis-specific genes and initiation of meiosis in Saccharomyces cerevisiae. The transcription of IME1 is repressed in the presence of glucose, and a low basal level of IME1 RNA is observed in vegetative cultures with acetate as the sole carbon source. Upon nitrogen depletion a transient induction in the transcription of IME1 is observed in MATa/MATalpha diploids but not in MAT-insufficient strains. In this study we demonstrate that the transcription of IME1 is controlled by an extremely unusual large 5' region, over 2,100 bp long. This area is divided into four different upstream controlling sequences (UCS). UCS2 promotes the transcription of IME1 in the presence of a nonfermentable carbon source. UCS2 is flanked by three negative regions: UCS1, which exhibits URS activity in the presence of nitrogen, and UCS3 and UCS4, which repress the activity of UCS2 in MAT-insufficient cells. UCS2 consists of alter...

Post-transcriptional regulation of IME1 determines initiation of meiosis in Saccharomyces cerevisiae

Molecular & general genetics : MGG, 1993

The IME1 gene of Saccharomyces cerevisiae is required for initiation of meiosis. Transcription of IME1 is detected under conditions which are known to induce initiation of meiosis, namely starvation for nitrogen and glucose, and the presence of MATa1 and MAT alpha 2 gene products. In this paper we show that IME1 is also subject to translational regulation. Translation of IME1 mRNA is achieved either upon nitrogen starvation, or upon G1 arrest. In the presence of nutrients, constitutively elevated transcription of IME1 is also sufficient for the translation of IME1 RNA. Four different conditions were found to cause expression of Ime1 protein in vegetative cultures: elevated transcription levels due to the presence of IME1 on a multicopy plasmid; elevated transcription provided by a Gal-IME1 construct; G1 arrest due to alpha-factor treatment; G1 arrest following mild heat-shock treatment of cdc28 diploids. Using these conditions, we obtained evidence that starvation is required not on...

Post-transcriptional regulation of IME1 determines initiation of meiosis in Saccharomyces cerevislae

Molecular Genetics And Genomics, 1993

The IME1 gene of Saccharomyces cerevisiae is required for initiation of meiosis. Transcription of IME1 is detected under conditions which are known to induce initiation of meiosis, namely starvation for nitrogen and glucose, and the presence of MA Tal and MA Te2 gene products. In this paper we show that IME1 is also subject to translational regulation. Translation of IME1 mRNA is achieved either upon nitrogen starvation, or upon G1 arrest. In the presence of nutrients, constitutively elevated transcription of IME1 is also sufficient for the translation of IME1 RNA. Four different conditions were found to cause expression of Imel protein in vegetative cultures: elevated transcription levels due to the presence of 1ME1 on a multicopy plasmid; elevated transcription provided by a Gal-IME1 construct; G1 arrest due to a-factor treatment; G1 arrest following mild heat-shock treatment of cdc28 diploids. Using these conditions, we obtained evidence that starvation is required not only for transcription and efficient translation of IME1, but also for either the activation of Imel protein or for the induction/activation of another factor that, either alone or in combination with Imel, induces meiosis.

Transcriptional regulation of meiosis in budding yeast

International review of cytology, 2003

Initiation of meiosis in Saccharomyces cerevisiae is regulated by mating type and nutritional conditions that restrict meiosis to diploid cells grown under starvation conditions. Specifically, meiosis occurs in MATa/MATalpha cells shifted to nitrogen depletion media in the absence of glucose and the presence of a nonfermentable carbon source. These conditions lead to the expression and activation of Ime 1, the master regulator of meiosis. IME1 encodes a transcriptional activator recruited to promoters of early meiosis-specific genes by association with the DNA-binding protein, Ume6. Under vegetative growth conditions these genes are silent due to recruitment of the Sin3/Rpd3 histone deacetylase and Isw2 chromatin remodeling complexes by Ume6. Transcription of these meiotic genes occurs following histone acetylation by Gcn5. Expression of the early genes promote entry into the meiotic cycle, as they include genes required for premeiotic DNA synthesis, synapsis of homologous chromosom...

Ime2, a Meiosis-Specific Kinase in Yeast, Is Required for Destabilization of Its Transcriptional Activator, Ime1

Molecular and Cellular Biology, 2002

In the budding yeast Saccharomyces cerevisiae, entry into meiosis and its successful completion depend on two positive regulators, Ime1 and Ime2. Ime1 is a transcriptional activator that is required for transcription of IME2, a serine/threonine protein kinase. We show that in vivo Ime2 associates with Ime1, that in vitro Ime2 phosphorylates Ime1, and that in living cells the stability of Ime1 depends on Ime2. Diploid cells with IME2 deleted show an increase in the level of Ime1, whereas haploid cells overexpressing IME2 show a decrease in the stability of Ime1. Furthermore, the level of Ime1 depends on the kinase activity of Ime2. Using a mutation in one of the ATPase subunits of the proteasome, RPT2, we demonstrate that Ime1, amino acids 270 to 360, is degraded by the 26S proteasome. We also show that Ime2 itself is an extremely unstable protein whose expression in vegetative cultures is toxic. We propose that a negative-feedback loop ensures that the activity of Ime1 will be restricted to a narrow window.

IME4, a gene that mediates MAT and nutritional control of meiosis in Saccharomyces cerevisiae

Molecular and cellular biology, 1992

In the yeast Saccharomyces cerevisiae, sporulation occurs in response to nutritional and genetic signals. The process is initiated when nutrient availability limits mitotic growth, but only in MATa/MAT alpha diploid cells. Under these conditions, the cells express an activator of meiosis (IME1), which is required for the expression of early sporulation-specific genes. We describe a new gene, IME4, whose activity is essential for IME1 transcript accumulation and sporulation. The IME4 transcript was induced in starved MATa/MAT alpha diploids but not in other cell types. In addition, excess IME4 promoted sporulation in mat-insufficient cells. Thus, IME4 appears to activate IME1 in response to cell type and nutritional signals. We have also explored the interactions between IME4 and two genes that are known to regulate IME1 expression. Normally, cells that lack complete MAT information cannot sporulate; when such strains lack RME1 activity or contain the semidominant RES1-1 mutation, ho...