The Saccharomyces cerevisiae DNA damage checkpoint is required for efficient repair of double strand breaks by non-homologous end joining (original) (raw)
Related papers
DNA Repair, 2005
In response to DNA damage, the Saccharomyces cerevisiae securin Pds1 blocks anaphase promotion by inhibiting ESP1-dependent degradation of cohesins. PDS1 is positioned downstream of the MEC1-and RAD9-mediated DNA damage-induced signal transduction pathways. Because cohesins participate in postreplicative repair and the pds1 mutant is radiation sensitive, we identified DNA repair pathways that are PDS1-dependent. We compared the radiation sensitivities and recombination phenotypes of pds1, rad9, rad51 single and double mutants, and found that whereas pds1 rad9 double mutants were synergistically more radiation sensitive than single mutants, pds1 rad51 mutants were not. To determine the role of PDS1 in recombinational repair pathways, we measured spontaneous and DNA damage-associated sister chromatid exchanges (SCEs) after exposure to X rays, UV and methyl methanesulfonate (MMS) and after the initiation of an HO endonuclease-generated double-strand break (DSB). The rates of spontaneous SCE and frequencies of DNA damage-associated SCE were similar in wild type and pds1 strains, but the latter exhibited reduced viability after exposure to DNA damaging agents. To determine whether pds1 mutants were defective in other pathways for DSB repair, we measured both single-strand annealing (SSA) and non-homologous end joining (NHEJ) in pds1 mutants. We found that the pds1 mutant was defective in SSA but efficient at ligating cohesive ends present on a linear plasmid. We therefore suggest that checkpoint genes control different pathways for DSB repair, and PDS1 and RAD9 have different roles in recombinational repair.
Molecular and Cellular Biology, 1996
In Saccharomyces cerevisiae, an HO endonuclease-induced double-strand break can be repaired by at least two pathways of nonhomologous end joining (NHEJ) that closely resemble events in mammalian cells. In one pathway the chromosome ends are degraded to yield deletions with different sizes whose endpoints have 1 to 6 bp of homology. Alternatively, the 4-bp overhanging 3 ends of HO-cut DNA (5-AACA-3) are not degraded but can be base paired in misalignment to produce ؉CA and ؉ACA insertions. When HO was expressed throughout the cell cycle, the efficiency of NHEJ repair was 30 times higher than when HO was expressed only in G 1 . The types of repair events were also very different when HO was expressed throughout the cell cycle; 78% of survivors had small insertions, while almost none had large deletions. When HO expression was confined to the G 1 phase, only 21% were insertions and 38% had large deletions. These results suggest that there are distinct mechanisms of NHEJ repair producing either insertions or deletions and that these two pathways are differently affected by the time in the cell cycle when HO is expressed. The frequency of NHEJ is unaltered in strains from which RAD1, RAD2, RAD51, RAD52, RAD54, or RAD57 is deleted; however, deletions of RAD50, XRS2, or MRE11 reduced NHEJ by more than 70-fold when HO was not cell cycle regulated. Moreover, mutations in these three genes markedly reduced ؉CA insertions, while significantly increasing the proportion of both small (؊ACA) and larger deletion events. In contrast, the rad50 mutation had little effect on the viability of G 1 -induced cells but significantly reduced the frequency of both ؉CA insertions and ؊ACA deletions in favor of larger deletions. Thus, RAD50 (and by extension XRS2 and MRE11) exerts a much more important role in the insertion-producing pathway of NHEJ repair found in S and/or G 2 than in the less frequent deletion events that predominate when HO is expressed only in G 1 .
Journal of Biological Physics, 2008
DNA repair, checkpoint pathways and protection mechanisms against different types of perturbations are critical factors for the prevention of genomic instability. The aim of the present work was to analyze the roles of RAD17 and HDF1 gene products during the late stationary phase, in haploid and diploid yeast cells upon gamma irradiation. The checkpoint protein, Rad17, is a component of a PCNA-like complex-the Rad17/Mec3/Ddc1 clamp-acting as a damage sensor; this protein is also involved in double-strand break (DBS) repair in cycling cells. The HDF1 gene product is a key component of the non-homologous end-joining pathway (NHEJ). Diploid and haploid rad17 /rad17 , and hdf1 Saccharomyces cerevisiae mutant strains and corresponding isogenic wild types were used in the present study. Yeast cells were grown in standard liquid nutrient medium, and maintained at 30 • C for 21 days in the stationary phase, without added nutrients. Cell samples were irradiated with 60 Co γ rays at 5 Gy/s, 50 Gy ≤ Dabs ≤ 200 Gy. Thereafter, cells were incubated in PBS (liquid holding: LH, 0 ≤ t ≤ 24 h). DNA chromosomal analysis (by pulsed-field electrophoresis), and surviving fractions were determined as a function of absorbed doses, either immediately after irradiation or after LH. Our results demonstrated that the proteins Rad17, as well as Hdf1, play essential roles in DBS repair and survival after gamma irradiation in the late stationary phase and upon nutrient stress (LH after irradiation). In haploid cells, the main pathway is NHEJ. In the diploid state, the induction of LH recovery requires the function of Rad17. Results are compatible with the action of a network of DBS repair pathways expressed upon different ploidies, and different magnitudes of DNA damage.
Genetics, 2000
Chromosomal repair was studied in stationary-phase Saccharomyces cerevisiae, including rad52/rad52 mutant strains deficient in repairing double-strand breaks (DSBs) by homologous recombination. Mutant strains suffered more chromosomal fragmentation than RAD52/RAD52 strains after treatments with cobalt-60 gamma irradiation or radiomimetic bleomycin, except after high bleomycin doses when chromosomes from rad52/rad52 strains contained fewer DSBs than chromosomes from RAD52/RAD52 strains. DNAs from both genotypes exhibited quick rejoining following gamma irradiation and sedimentation in isokinetic alkaline sucrose gradients, but only chromosomes from RAD52/RAD52 strains exhibited slower rejoining (10 min to 4 hr in growth medium). Chromosomal DSBs introduced by gamma irradiation and bleomycin were analyzed after pulsed-field gel electrophoresis. After equitoxic damage by both DNA-damaging agents, chromosomes in rad52/rad52 cells were reconstructed under nongrowth conditions [liquid hol...
Molecular and Cellular Biology, 1998
Genetic instability in the Saccharomyces cerevisiae rad9 mutant correlates with failure to arrest the cell cycle in response to DNA damage. We quantitated the DNA damage-associated stimulation of directed translocations in RAD9 ؉ and rad9 mutants. Directed translocations were generated by selecting for His ؉ prototrophs that result from homologous, mitotic recombination between two truncated his3 genes, GAL1::his3-⌬5 and trp1::his3-⌬3::HOcs. Compared to RAD9 ؉ strains, the rad9 mutant exhibits a 5-fold higher rate of spontaneous, mitotic recombination and a greater than 10-fold increase in the number of UV-and X-ray-stimulated His ؉ recombinants that contain translocations. The higher level of recombination in rad9 mutants correlated with the appearance of nonreciprocal translocations and additional karyotypic changes, indicating that genomic instability also occurred among non-his3 sequences. Both enhanced spontaneous recombination and DNA damage-associated recombination are dependent on RAD1, a gene involved in DNA excision repair. The hyperrecombinational phenotype of the rad9 mutant was correlated with a deficiency in cell cycle arrest at the G 2-M checkpoint by demonstrating that if rad9 mutants were arrested in G 2 before irradiation, the numbers both of UV-and ␥-ray-stimulated recombinants were reduced. The importance of G 2 arrest in DNA damageinduced sister chromatid exchange (SCE) was evident by a 10-fold reduction in HO endonuclease-induced SCE and no detectable X-ray stimulation of SCE in a rad9 mutant. We suggest that one mechanism by which the RAD9-mediated G 2-M checkpoint may reduce the frequency of DNA damage-induced translocations is by channeling the repair of double-strand breaks into SCE.
Molecular and Cellular Biology
In Saccharomyces cerevisiae, an HO endonuclease-induced double-strand break can be repaired by at least two pathways of nonhomologous end joining (NHEJ) that closely resemble events in mammalian cells. In one pathway the chromosome ends are degraded to yield deletions with different sizes whose endpoints have 1 to 6 bp of homology. Alternatively, the 4-bp overhanging 3 ends of HO-cut DNA (5-AACA-3) are not degraded but can be base paired in misalignment to produce ؉CA and ؉ACA insertions. When HO was expressed throughout the cell cycle, the efficiency of NHEJ repair was 30 times higher than when HO was expressed only in G 1 . The types of repair events were also very different when HO was expressed throughout the cell cycle; 78% of survivors had small insertions, while almost none had large deletions. When HO expression was confined to the G 1 phase, only 21% were insertions and 38% had large deletions. These results suggest that there are distinct mechanisms of NHEJ repair producing either insertions or deletions and that these two pathways are differently affected by the time in the cell cycle when HO is expressed. The frequency of NHEJ is unaltered in strains from which RAD1, RAD2, RAD51, RAD52, RAD54, or RAD57 is deleted; however, deletions of RAD50, XRS2, or MRE11 reduced NHEJ by more than 70-fold when HO was not cell cycle regulated. Moreover, mutations in these three genes markedly reduced ؉CA insertions, while significantly increasing the proportion of both small (؊ACA) and larger deletion events. In contrast, the rad50 mutation had little effect on the viability of G 1 -induced cells but significantly reduced the frequency of both ؉CA insertions and ؊ACA deletions in favor of larger deletions. Thus, RAD50 (and by extension XRS2 and MRE11) exerts a much more important role in the insertion-producing pathway of NHEJ repair found in S and/or G 2 than in the less frequent deletion events that predominate when HO is expressed only in G 1 .
Recruitment of the Recombinational Repair Machinery to a DNA Double-Strand Break in Yeast
Molecular Cell, 2003
viewed in Pâ ques and Haber, 1999; Sung et al., 2000). In the mouse, a homozygous null allele of RAD51 leads to embryonic lethality (Tsuzuki et al., 1996), and muta-Program in Molecular Medicine tions in RAD genes are associated with a spectrum of University of Massachusetts Medical School diseases, including cancer (reviewed in Ivanov and Ha-Worcester, Massachusetts 01605 ber, 1997; Jasin, 2000; Michelson and Weinert, 2000). 2 Institute of Biotechnology and Studies in yeast have suggested a sequence of molec-Department of Molecular Medicine ular events that occur following formation of a DSB (re-. First, the 5Ј ends of DNA that flank San Antonio, Texas 78245 the break are resected by an exonuclease. Rad51p, a functional homolog of the E. coli RecA recombinase, then binds the exposed single-stranded tails forming a right-Summary handed helical nucleoprotein filament. In vitro, Rad52p (Sung, 1997a) and a Rad55p/Rad57p heterodimer (Sung, Repair of DNA double-strand breaks (DSBs) by homol-1997b) can promote this early step by overcoming the ogous recombination requires members of the RAD52 inhibitory effects of the heterotrimeric single-stranded epistasis group. Here we use chromatin immunopre-DNA binding protein, RPA. The Rad51p nucleoprotein cipitation (ChIP) to examine the temporal order of filament is then believed to function in cooperation with recruitment of Rad51p, Rad52p, Rad54p, Rad55p, Rad54p to search the genome for a homologous pairing and RPA to a single, induced DSB in yeast. Our results partner and to form a heteroduplex "joint molecule" (Petsuggest a sequential, interdependent assembly of ukhova et al., 1998, 2000). Joint molecule formation is Rad proteins adjacent to the DSB initiated by binding followed by extension of the incoming strand by DNA of Rad51p. ChIP time courses from various mutant polymerases and branch migration, ultimately leading strains and additional biochemical studies suggest to restoration of the genetic information spanning the that Rad52p, Rad55p, and Rad54p each help promote break (reviewed in Pâ ques and Haber, 1999). the formation and/or stabilization of the Rad51p nu-Much less is known about how Rad proteins functioncleoprotein filament. We also find that all four Rad ally cooperate during DSB repair in vivo. Immunofluoresproteins associate with homologous donor sequences cence studies have shown that Rad51p, Rad52p, and during strand invasion. These studies provide a near Rad54p colocalize to "foci" in response to DNA damage comprehensive view of the molecular events required in vivo (Haaf et al., 1995; Tan et al., 1999), suggesting for the in vivo assembly of a functional Rad51p presynthat Rad proteins might function together within a larger, aptic filament. multiprotein complex. Consistent with this view, coimmunoprecipitation and yeast two-hybrid assays have Introduction shown that many members of the RAD52 group can interact with each other (Golub et al., 1997; Hays et al., DNA double-strand breaks (DSBs) arise in DNA due to 1995; Johnson and Symington, 1995; Krejci et al., 2001). environmental insults such as ionizing radiation or In contrast, recent studies indicate that the composition chemical exposure. DSBs also play an important role as of the damage-induced foci are dynamic, and photointermediates in DNA replication, immunoglobulin V(D)J bleaching studies indicate that several Rad proteins recombination, meiotic and mitotic crossing-over, and have very different diffusion coefficients, suggesting that yeast mating-type switching. Failure to correctly prothey may not exist together in a preassembled protein cess these DSBs can result in deletion or insertion of complex (Essers et al., 2002). genetic information, chromosomal fragmentation, trans-We wished to dissect how Rad proteins are recruited location, and chromosome loss. and function at a DSB in vivo. Here we use chromatin Homologous recombination (HR) is a major pathway immunoprecipitation (ChIP) analyses to examine the of DSB repair in all eukaryotes and has a distinct advantemporal order of Rad protein recruitment to a single, tage over other mechanisms in that it is mostly error induced DSB in yeast. Our results suggest a sequential free. Repair of DSBs by HR requires the RAD52 epistasis pathway, where Rad51p binds first, followed by Rad52p, group, defined by the yeast RAD50, RAD51, RAD52, Rad55p, and finally Rad54p. Each of these Rad proteins RAD54, RAD55, RAD57, RAD59, MRE11, and XRS2 genes. also associates with the homologous donor sequences These genes are highly conserved among all eukaryotes during strand invasion. We further examined the func-(Cromie et al., 2001; Pâ ques and Haber, 1999; Sung et tional interdependencies among these proteins by peral., 2000), highlighting the importance of these proteins
Nucleic acids …, 2009
In the yeast Saccharomyces cerevisiae, the Rad1–Rad10 protein complex participates in nucleotide excision repair (NER) and homologous recombination (HR). During HR, the Rad1–Rad10 endonuclease cleaves 3′ branches of DNA and aberrant 3′ DNA ends that are refractory to other 3′ processing enzymes. Here we show that yeast strains expressing fluorescently labeled Rad10 protein (Rad10-YFP) form foci in response to double-strand breaks (DSBs) induced by a site-specific restriction enzyme, I-SceI or by ionizing radiation (IR). Additionally, for endonuclease-induced DSBs, Rad10-YFP localization to DSB sites depends on both RAD51 and RAD52, but not MRE11 while IR-induced breaks do not require RAD51. Finally, Rad10-YFP colocalizes with Rad51-CFP and with Rad52-CFP at DSB sites, indicating a temporal overlap of Rad52, Rad51 and Rad10 functions at DSBs. These observations are consistent with a putative role of Rad10 protein in excising overhanging DNA ends after homology searching and refine the potential role(s) of the Rad1–Rad10 complex in DSB repair in yeast.
Pathway utilization in response to a site-specific DNA double-strand break in fission yeast
The EMBO Journal, 2003
We have examined the genetic requirements for ef®cient repair of a site-speci®c DNA double-strand break (DSB) in Schizosaccharomyces pombe. Technology was developed in which a unique DSB could be generated in a non-essential minichromosome, Ch 16 , using the Saccharomyces cerevisiae HO-endonuclease and its target site, MATa. DSB repair in this context was predominantly through interchromosomal gene conversion. We found that the homologous recombination (HR) genes rhp51 + , rad22A + , rad32 + and the nucleotide excision repair gene rad16 + were required for ef®cient interchromosomal gene conversion. Further, DSB-induced cell cycle delay and ef®cient HR required the DNA integrity checkpoint gene rad3 +. Rhp55 was required for interchromosomal gene conversion; however, an alternative DSB repair mechanism was used in an rhp55D background involving ku70 + and rhp51 +. Surprisingly, DSB-induced minichromosome loss was signi®cantly reduced in ku70D and lig4D non-homologous end joining (NHEJ) mutant backgrounds compared with wild type. Furthermore, roles for Ku70 and Lig4 were identi®ed in suppressing DSB-induced chromosomal rearrangements associated with gene conversion. These ®ndings are consistent with both competitive and cooperative interactions between components of the HR and NHEJ pathways.