The budding yeast Rad9 checkpoint protein is subjected to Mec1/Tel1-dependent hyperphosphorylation and interacts with Rad53 after DNA damage (original) (raw)

RAD9 and RAD24 define two additive, interacting branches of the DNA damage checkpoint pathway in budding yeast normally required for Rad53 modification and activation

The EMBO Journal, 1998

In budding yeast, RAD9 and RAD24/RAD17/MEC3 are believed to function upstream of MEC1 and RAD53 in signalling the presence of DNA damage. Deletion of any one of these genes reduces the normal G 1 /S and G 2 /M checkpoint delays after UV irradiation, whereas in rad9∆-rad24∆ cells the G 1 /S checkpoint is undetectable, although there is a residual G 2 /M checkpoint. We have shown previously that RAD9 also controls the transcriptional induction of a DNA damage regulon (DDR). We now report that efficient DDR induction requires all the above-mentioned checkpoint genes. Residual induction of the DDR after UV irradiation observed in all single mutants is not detectable in rad9∆-rad24∆. We have examined the G 2 /M checkpoint and UV sensitivity of single mutants after overexpression of the checkpoint proteins. This analysis indicates that RAD9 and the RAD24 epistasis group can be placed onto two separate, additive branches that converge on MEC1 and RAD53. Furthermore, MEC3 appears to function downstream of RAD24/RAD17. The transcriptional response to DNA damage revealed unexpected and specific antagonism between RAD9 and RAD24. Further support for genetic interaction between RAD9 and RAD24 comes from study of the modification and activation of Rad53 after damage. Evidence for bypass of RAD53 function under some conditions is also presented.

The BRCT domain of the S. cerevisiae checkpoint protein Rad9 mediates a Rad9–Rad9 interaction after DNA damage

Current Biology, 1999

The Saccharomyces cerevisiae checkpoint protein Rad9 is required for transient cell-cycle arrest and transcriptional induction of DNA-repair genes in response to DNA damage [1]. It contains a carboxyterminal tandem repeat of the BRCT (BRCA1 carboxyl terminus) motif, a motif that is also found in many proteins involved in various aspects of DNA repair, recombination and checkpoint control [2,3]. We produced yeast strains expressing Rad9 in which the BRCT domain had been deleted or which harboured point mutations in the highly conserved aromatic residue of each BRCT motif. Rates of survival and checkpoint delay of the mutants after ultraviolet (UV) irradiation were essentially equivalent to those of rad9∆ ∆ (null) cells, demonstrating that the BRCT domain is required for Rad9 function. Rad9 hyperphosphorylation, which occurs after DNA damage [4-6], was absent in the BRCT mutants, as was Rad9-dependent phosphorylation of the Rad53 protein. A two-hybrid approach identified a specific interaction between the Rad9 BRCT domain and itself. Biochemical analysis in vitro and in vivo confirmed this interaction and, furthermore, demonstrated that the Rad9 BRCT domain preferentially interacted with the hyperphosphorylated forms of Rad9. This interaction was suppressed by mutations of the BRCT motifs that caused null phenotypes in vivo, suggesting that Rad9 oligomerization is required for Rad9 function after DNA damage.

RAD9 and DNA polymerase epsilon form parallel sensory branches for transducing the DNA damage checkpoint signal in Saccharomyces cerevisiae

Genes & development, 1996

In response to DNA damage and replication blocks, yeast cells arrest at distinct points in the cell cycle and induce the transcription of genes whose products facilitate DNA repair. Examination of the inducibility of RNR3 in response to UV damage has revealed that the various checkpoint genes can be arranged in a pathway consistent with their requirement to arrest cells at different stages of the cell cycle. While RADg, RAD24, and MEC3 are required to activate the DNA damage checkpoint when cells are in G1 or G2, POL2 is required to sense UV damage and replication blocks when cells are in S phase. The phosphorylation of the essential central transducer, Rad53p, is dependent on POL2 and RAD9 in response to UV damage, indicating that RAD53 functions downstream of both these genes. Mutants defective for both pathways are severely deficient in Rad53p phosphorylation and RNR3 induction and are significantly more sensitive to DNA damage and replication blocks than single mutants alone. These results show that POL2 and RAD9 function in parallel branches for sensing and transducing the UV DNA damage signal. Each of these pathways subsequently activates the central transducers Meclp/Esrlp/Sad3p and Rad53p/Mec2p/Sadlp, which are required for both cell-cycle arrest and transcriptional responses.

A novel role for the budding yeast RAD9 checkpoint gene in DNA damage-dependent transcription

The EMBO journal, 1996

Cells respond to DNA damage by arresting cell cycle progression and activating several DNA repair mechanisms. These responses allow damaged DNA to be repaired efficiently, thus ensuring the maintenance of genetic integrity. In the budding yeast, Saccharomyces cerevisiae, DNA damage leads both to activation of checkpoints at the G1, S and G2 phases of the cell cycle and to a transcriptional response. The G1 and G2 checkpoints have been shown previously to be under the control of the RAD9 gene. We show here that RAD9 is also required for the transcriptional response to DNA damage. Northern blot analysis demonstrated that RAD9 controls the DNA damage-specific induction of a large 'regulon' of repair, replication and recombination genes. This induction is cell-cycle independent as it was observed in asynchronous cultures and cells blocked in G1 or G2/M. RAD9-dependent induction was also observed from isolated damage responsive promoter elements in a lacZ reporter-based plasmid a...

Hyperactivation of the yeast DNA damage checkpoint by TEL1 and DDC2 overexpression

The EMBO Journal, 2001

The evolutionarily conserved yeast Mec1 and Tel1 protein kinases, as well as the Mec1-interacting protein Ddc2, are involved in the DNA damage checkpoint response. We show that regulation of Tel1 and Ddc2±Mec1 activities is important to modulate both activation and termination of checkpoint-mediated cell cycle arrest. In fact, overproduction of either Tel1 or Ddc2 causes a prolonged cell cycle arrest and cell death in response to DNA damage, impairing the ability of cells to recover from checkpoint activation. This cell cycle arrest is independent of Mec1 in UV-irradiated Tel1-overproducing cells, while it is strictly Mec1 dependent in similarly treated DDC2overexpressing cells. The Rad53 checkpoint kinase is instead required in both cases for cell cycle arrest, which correlates with its enhanced and persistent phosphorylation, suggesting that unscheduled Rad53 phosphorylation might prevent cells from re-entering the cell cycle after checkpoint activation. In addition, Tel1 overproduction results in transient nuclear division arrest and concomitant Rad53 phosphorylation in the absence of exogenous DNA damage independently of Mec1 and Ddc1.

Role of the Saccharomyces cerevisiae Rad9 protein in sensing and responding to DNA damage

Biochemical Society Transactions, 2001

Eukaryotic cells have evolved surveillance mechanisms, known as DNA-damage checkpoints, that sense and respond to genome damage. DNA-damage checkpoint pathways ensure co-ordinated cellular responses to DNA damage, including cell cycle delays and activation of repair mechanisms. RAD9, from Saccharomyces cerevisiae, was the first damage checkpoint gene to be identified, although its biochemical function remained unknown until recently. This review examines briefly work that provides significant insight into how Rad9 activates the checkpoint signalling kinase Rad53.

The yeast DNA damage checkpoint proteins control a cytoplasmic response to DNA damage

Proceedings of the National Academy of Sciences, 2007

A single HO endonuclease-induced double-strand break (DSB) is sufficient to activate the DNA damage checkpoint and cause Saccharomyces cells to arrest at G 2 /M for 12–14 h, after which cells adapt to the presence of the DSB and resume cell cycle progression. The checkpoint signal leading to G 2 /M arrest was previously shown to be nuclear-limited. Cells lacking ATR-like Mec1 exhibit no DSB-induced cell cycle delay; however, cells lacking Mec1's downstream protein kinase targets, Rad53 or Chk1, still have substantial G 2 /M delay, as do cells lacking securin, Pds1. This delay is eliminated only in the triple mutant chk1 Δ rad53 Δ pds1 Δ, suggesting that Rad53 and Chk1 control targets other than the stability of securin in enforcing checkpoint-mediated cell cycle arrest. The G 2 /M arrest in rad53 Δ and chk1 Δ revealed a unique cytoplasmic phenotype in which there are frequent dynein-dependent excursions of the nucleus through the bud neck, without entering anaphase. Such excursi...

Regulation of Saccharomyces Rad53 Checkpoint Kinase during Adaptation from DNA Damage–Induced G2/M Arrest

Molecular Cell, 2001

In budding yeast, a single unrepaired DSB, for example, one created by expression of the site-specific HO endonuclease, is sufficient to cause G2/M arrest (Sandell and Zakian, 1993). However, these cells do not remain permanently arrested; rather, after 8-12 hr they resume progression through the cell cycle (Sandell and Waltham, Massachusetts 02454 Zakian, 1993; Toczyski et al., 1997; Lee et al., 1998). This † Istituto F.I.R.C. di Oncologia Molecolare and escape from G2/M arrest occurs despite the continued Dipartimento di Genetica e di Biologia dei presence of the broken chromosome and hence is Microrganismi termed adaptation (Sandell and Zakian, 1993; Toczyski Universita' degli Studi di Milano et al., 1997; Lee et al., 1998).