Web-based distribution of radiological images from PACS to EPR (original) (raw)
Related papers
Academic Radiology, 2004
Medical images are currently created digitally and stored in the radiology department's picture archiving and communication system. Reports are usually stored in the electronic patient record of other information systems, such as the radiology information system (RIS) and the hospital information system (HIS). But high-quality services can only be provided if electronic patient record data is integrated with digital images in picture archiving and communication systems. Clinicians should be able to access both systems' data in an integrated and consistent way as part of their regular working environment, whether HIS or RIS. Also, this system should allow for teleconferencing with other users, eg, for consultation with a specialist in the radiology department. This article describes a web-based solution that integrates the digital images of picture archiving and communication systems with electronic patient record/HIS/RIS data and has built-in teleconferencing functionality. This integration has been successfully tested using three different commercial RIS and HIS products.
Journal of Digital Imaging, 1993
Information relevant to radiological applications is commonly managed by several autonomous medical information systems including hospital information systems (HIS), radiological information systems (RIS), and picture archiving and communications systems (PACS). In this report, we expiain the need to coordinate these systems and to provide some framework in which they can exchange information. In the first half of this report, we describe the integration of a PACS system into a hospital operation. Next, we present the interfacing methods between the HIS and the RIS, and between the RIS and the PACS. Two methods are further detailed for the communication between the RIS and the PACS (1) the triggered database to database transfer, and (21 the query protocol. The implementation of the first method successfully allows RIS reports, procedure and patient demographic information to be displayed at the request of the user along with the associated images at a PACS workstation. The query protocol allows a PACS to dynamically query RIS information. It will be eventually integrated into the design of a scientific multimedia distributed medical database system built on top of the HIS, the RIS, and the PACS.
Journal of Digital Imaging, 1993
In this report we present an integrated picture archiving and communication system (PACS)-radiology information system (RIS) which runs as part of the daily routine in the Department of Radiology at the University of Graz. Although the PACS and the RiS have been developed independently, the two systems are interfaced to ensure a unified and consistent Iong-term archive. The configuration connects four computer tomography scanners (one of them situated at a distance of 1 km), a magnetic resonance imaging scanner, a digital subtraction angiography unit, an evaluation console, a diagnostic console, an image display console, an archive with two optical disk drives, and several RIS terminals. The configuration allows the routine archiving of all examinations on optical disks independent of reporting. The management of the optical disks is performed by the RIS. Images can be selected for retrieval vŸ the RIS by using patient identification or medical criteria. A special software process (PACS-MONITOR) enables the user to survey and manage image communication, archiving, and retrieval as well as to get information about the status of the system at any time and handle the different procedures in the PACS. The system is active 24 hours a day. To make the PACS operation as independent as possible from the permanent presence of a system manager (electronic data processing expert), a rule-based expert system (OPERAS; OPERating ASsistant) is in use to Iocalize and eliminate malfunctions that occur during routine work. The PACS-RIS reduces labor and speeds access to images within radiology and clinical departments.
Digital image management and communication in medicine
Computerized Medical Imaging and Graphics, 1994
With the rapid development of digital imaging modalities in medicine, there is an increasing need for an efficient management and archival of medical images in digital form. Picture Archiving and Communication Systems (PACS) are becoming an essential component of medical imaging equipment, allowing for medical images to be accessed and stored directly in digital form. This paper describes a hospital-wide PACS currently under development at the University Hospital of Geneva, based on an open architecture, regrouping equipment from different vendors in a distributed topology. The image archival is organized in multiple locations geographically distributed in the hospital. The PACS database is fully integrated with the concurrent Radiology Information System (RIS) and Hospital Information System (HIS). A standard image storage format called the PAPYRUS format was developed for the storage of medical images from a variety of imaging modalities. To provide a more uniform user interface on a variety of different workstations, a common platform for image display and manipulation called OSIRIS was developed.
Can radiologic images be incorporated into the electronic patient record?
Journal of Digital Imaging, 2000
As radiology makes advances toward filmlessness, all of medicine is headed, just as rapidly, toward paperless transmission of patient information. While there ate obvious advantages to this electronic approach, and several standards to conforto to for the transmission of textual (Health Level 7 [HL-7]) and image (Digital Imaging and Communications in Medicine [DICOM]) data, it is the integration of these two data sets that is clinically essential and yet poorly defined. This report defines ah approach for, and the successful implementation of, the integration of radiologic image data with textual data contained within the electronic patient record (EPR) through the use of standard internet protocols. Incorporation of medical images in the EPR has proven to be critical to the successful deployment of picture archiving and communications systems (PACS) and the reduction of film consumption at Massachusetts General Hospital (MGH). Since the installation of the first internet-based Image Data Repository (IDR) at MGH in 1995, the system has adequately served to meet the needs of clinical requests by both radiology-only browser users and users of the EPR. It has drastically reduced the need for film and provided concurrent display of images and text throughout the institution and beyond.
Research and teaching access to a large clinical picture archiving and communication system
Journal of Digital Imaging, 2001
Purpose: To identify practical issues surrounding delivering digital images from picture archiving and communication systems (PACS) for research and teaching purposes. The complexity of Digital Imaging and Communications in Medicine (DICOM) access methods, security, patient confidentiality, PACS database integrity, portability, and scalability are discussed. A software prototype designed to resolve these issues is described.System Architecture: A six-component, three-tier, client server software application program supporting DICOM query/retrieve services was developed in the JAWA language. This software was interfaced to a large GE (Mt Prospect, IL) Medical Systems clinical PACS at Northwestern Memorial Hospital (NMH).Conclusion: Images can be delivered from a clinical PACS for research and teaching purposes. Concerns for security, patient confidentiality, integrity of the PACS database, and management of the transactions can be addressed. The described software is one such solution for achieving this goal.
Development of an Electronic Radiologist's Office in a Private Institute
RadioGraphics, 2000
A computer system that improves the quality, user-friendliness, accessibility, and management of radiology data (images, reports, databases, knowledge) was implemented at a private institute. A picture archiving and communication system (PACS) was integrated with the radiology information system (RIS). Two servers and 12 personal computers form the integrated system. The first server is dedicated to management and archiving of Digital Imaging and Communications in Medicine (DICOM) images. The second server is dedicated to management of the RIS and archiving of patient data (Structured Query Language database), reports (hypertext markup language [HTML]), and images in the Joint Photographic Experts Group (JPEG) format (mini-PACS). There are three main client-server networks: a common network of imaging modalities (magnetic resonance imaging, computed tomography, ultrasonography, digital radiography) and two fast Ethernet networks (the PACS network and the RIS network). The RIS-PACS is linked remotely with other workstations and servers via Integrated Services Digital Network (ISDN). Images and reports can be distributed to referring physicians in the form of multimedia HTML and JPEG documents, which can also be used for quick and easy archiving, distribution, and reviewing within the institute. However, referring physicians have been reluctant to use electronic reports and images.