Differential Induction of Interleukin-10 and Interleukin-12 in Dendritic Cells by Microbial Toll-Like Receptor Activators and Skewing of T-Cell Cytokine Profiles (original) (raw)
Related papers
Journal of Experimental Medicine, 2001
Toll-like receptors (TLRs) are ancient microbial pattern recognition receptors highly conserved from Drosophila to humans. To investigate if subsets of human dendritic cell precursors (pre-DC), including monocytes (pre-DC1), plasmacytoid DC precursors (pre-DC2), and CD11c+ immature DCs (imDCs) are developed to recognize different microbes or microbial antigens, we studied their TLR expression and responses to microbial antigens. We demonstrate that whereas monocytes preferentially express TLR 1, 2, 4, 5, and 8, plasmacytoid pre-DC strongly express TLR 7 and 9. In accordance with these TLR expression profiles, monocytes respond to the known microbial ligands for TLR2 (peptidoglycan [PGN], lipoteichoic acid) and TLR4 (lipopolysaccharide), by producing tumor necrosis factor (TNF)-α and interleukin (IL)-6. In contrast, plasmacytoid pre-DCs only respond to the microbial TLR9-ligand, CpG-ODNs (oligodeoxynucleotides [ODNs] containing unmethylated CpG motifs), by producing IFN-α. CD11c+ imD...
Infection and Immunity, 2002
ABSTRACTWe have previously reported that differences in early production of interleukin 12 (IL-12) by dendritic cells (DC) underlies the difference between the susceptibilities toListeria monocytogenesof C57BL/6 and BALB/c mice. To elucidate mechanisms for the different abilities of DC to produce cytokine in C57BL/6 and BALB/c mice, we examined Toll-like receptor (TLR) expression by DC and their responses in vitro to known microbial ligands for TLRs. We found that DC isolated from the spleens of naive C57BL/6 mice preferentially expressed TLR9 mRNA, whereas DC from naive BALB/c mice strongly expressed TLR2, -4, -5, and -6 mRNAs. C57BL/6 DC produced a higher level of IL-12p40 in response to the ligands for TLR4 (lipopolysaccharide), TLR2 (lipoprotein), and TLR9 (CpG), whereas BALB/c DC responded to these ligands by producing a larger amount of monocyte chemoattractant protein 1. C57BL/6 DC expressed higher levels of CD40 and Stat4 than BALB/c DC did, suggesting that naive C57BL/6 mic...
Toll-like receptor ligand activation of murine bone marrow-derived dendritic cells
Immunology, 2009
Dendritic cells (DCs) are required for the initiation of primary immune responses. The pattern of Toll-like receptor (TLR) expression on various subsets of these cells has been shown to differ, suggestive of distinct roles in influencing immune responses. We have examined here the responses of immature DCs derived from murine bone marrow (BMDCs) to a range of TLR ligands. BMDCs cultured for 6 days in the presence of granulocyte-macrophage colony-stimulating factor were stimulated for 24 hr with ligands to TLR1-2 [Pam 3 Cys-Ser-(Lys) 4 (PAM)], TLR2-6 (macrophageactivating lipopeptide-2 (MALP-2); zymosan or peptidoglycan (PG)], TLR3 (polyinosinic-polycytidylic acid), TLR4 [lipopolysaccharide R515 (LPS)], TLR5 (flagellin), TLR7 (polyuridylic acid) and TLR9 [CpG ODN2395 (CpG)]. DC activation was monitored using membrane marker expression and analysis of culture supernatants for cytokine/chemokine release. Ligands to TLR3 and TLR7 failed to activate BMDCs. All other TLR ligands caused elevated expression of membrane markers. PAM, MALP-2 and LPS induced high-level expression of proinflammatory cytokines and chemokines. Treatment with CpG was associated with a preferential type 1 cytokine and chemokine profile. Zymosan and PG were proinflammatory but also skewed towards a type 2 pattern of cytokines and chemokines. In contrast, flagellin did not cause marked secretion by BMDCs of cytokines or chemokines. These data for BMDCs are largely consistent with the reported TLR repertoire of freshly isolated murine Langerhans cells. In addition, murine BMDCs show selective responses to TLR ligands with respect to general activation, with differentiated cytokine patterns suggestive of potential priming for divergent immune responses.
European Journal of Cancer, 2001
Human plasmacytoid dendritic cells (DC) (PDC, CD123+) and myeloid DC (MDC, CD11c+) may be able to discriminate between distinct classes of microbial molecules based on a different pattern of Toll-like receptor (TLR) expression. TLR1-TLR9 were examined in purified PDC and MDC. TLR9, which is critically involved in the recognition of CpG motifs in mice, was present in PDC but not in MDC. TLR4, which is required for the response to LPS, was selectively expressed on MDC. Consistent with TLR expression, PDC were susceptible to stimulation by CpG oligodeoxynucleotide (ODN) but not by LPS, while MDC responded to LPS but not to CpG ODN. In PDC, CpG ODN supported survival, activation (CD80, CD86, CD40, MHC class II), chemokine production (IL-8, IP-10) and maturation (CD83). CD40 ligand (CD40L) and CpG ODN synergized to activate PDC and to stimulate the production of IFN-alpha and IL-12 including bioactive IL-12 p70. Previous incubation of PDC with IL-3 decreased the amount of CpG-induced IFN-alpha and shifted the cytokine response in favor of IL-12. CpG ODN-activated PDC showed an increased ability to stimulate proliferation of naive allogeneic CD4 T cells, butTh1 polarization of developing T cells required simultaneous activation of PDC by CD40 ligation and CpG ODN. CpG ODN-stimulated PDC expressed CCR7, which mediates homing to lymph nodes. In conclusion, our studies reveal that IL-12 p70 production by PDC is under strict control of two signals, an adequate exogenous microbial stimulus such as CpG ODN, and CD40L provided endogenously by activated T cells. Thus, CpG ODN acts as an enhancer of T cell help, while T cell-controlled restriction to foreign antigens is maintained.
Journal of Experimental Medicine, 2002
Dendritic cells (DCs) play a crucial role in the immune responses against infections by sensing microbial invasion through toll-like receptors (TLRs). In humans, two distinct DC subsets, CD11c Ϫ plasmacytoid DCs (PDCs) and CD11c ϩ myeloid DCs (MDCs), have been identified and can respond to different TLR ligands, depending on the differential expression of cognate TLRs. In this study, we have examined the effect of TLR-7 ligands on human DC subsets. Both subsets expressed TLR-7 and could respond to TLR-7 ligands, which enhanced the survival of the subsets and upregulated the surface expression of costimulatory molecules such as CD40, CD80, and CD86. However, the cytokine induction pattern was distinct in that PDCs and MDCs produced interferon (IFN)-␣ and interleukin (IL)-12, respectively. In response to TLR-7 ligands, the Th1 cell supporting ability of both DC subsets was enhanced, depending on the cytokines the respective subsets produced. This study demonstrates that TLR-7 exerts its biological effect in a DC subset-specific manner.
Bacterial signalling overrides cytokine signalling and modifies dendritic cell differentiation
Immunology, 2009
Heterogeneity of dendritic cells (DC) is evident in the gut-associated lymphoid tissue and determined, in part, by incompletely understood local environmental factors. Bacterial signalling is likely to be a dominant influence on precursor cells when recruited to the mucosa. We assessed the influence of commensal bacteria on DC differentiation and function. Murine bone marrow progenitors were exposed to Lactobacillus salivarius, Bifidobacterium breve or Bifidobacterium infantis. Differences in cell surface phenotype and function were assessed. Myeloid differentiation factor 88 )/) (MyD88) cells were used to determine the influence of Tolllike receptor signalling. While bacterial strains varied in impact, there was a consistent dose-dependent inhibition of DC differentiation with a shift toward a Gr-1 + CD11b + monocyte-like phenotype. A single bacterium on a per cell basis (1 : 1) was sufficient to alter cell phenotype. The effect was only evident in early precursors. Enhanced interleukin-10 production correlated with increased Forkhead box P3 expression and reduced T-cell proliferation. The bacterial effect on DC differentiation was found to be MyD88-dependent. Signalling by enteric commensals through pattern recognition receptors on precursor cells alters DC differentiation and results in cells that are phenotypically monocyte-like and functionally suppressive. This may account for some of the features of mucosal immune tolerance to the microbiota.