In Vivo Expression of Toll-Like Receptor 2 and 4 by Renal Epithelial Cells: IFN- and TNF- Mediated Up-Regulation During Inflammation (original) (raw)
Related papers
Infection and Immunity, 2012
Our immune system has to constantly strike a balance between activation and inhibition of an inflammatory response to combat invading pathogens and avoid inflammation-induced collateral tissue damage. Toll interleukin-1 receptor 8 (IL-1R-8)/single Ig domain IL-1R-related molecule (TIR8/SIGIRR) is an inhibitor of Toll-like receptor (TLR)/IL-1R signaling, which is predominantly expressed in the kidney. The biological role of renal TIR8 during infection is, however, unknown. We therefore evaluated renal TIR8 expression during Escherichia coli pyelonephritis and explored its role in host defense using TIR8 ؊/؊ versus TIR8 ؉/؉ mice. We found that TIR8 protein is abundantly present in the majority of cortical tubular epithelial cells. Pyelonephritis resulted in a significant downregulation of TIR8 mRNA in kidneys of TIR8 ؉/؉ mice. TIR8 inhibited an effective host response against E. coli, as indicated by diminished renal bacterial outgrowth and dysfunction in TIR8 ؊/؊ mice. This correlated with increased amounts of circulating and intrarenal neutrophils at the early phase of infection. TIR8 ؊/؊ tubular epithelial cells had increased cytokine/chemokine production when stimulated with lipopolysaccharide (LPS) or heat-killed E. coli, suggesting that TIR8 played an anti-inflammatory role during pathogen stimulation by inhibiting LPS signaling. These data suggest that TIR8 is an important negative regulator of an LPS-mediated inflammatory response in tubular epithelial cells and dampens an effective antibacterial host response during pyelonephritis caused by uropathogenic E. coli.
The role of Toll-like receptors in renal diseases
Nature Reviews Nephrology, 2010
| Toll-like receptors (TLRs) have a key role in innate immunity. These receptors recognize both pathogen-associated molecular patterns and molecules that are released from damaged tissue. TLRs mediate signal transduction pathways through the activation of transcription factors that regulate the expression of proinflammatory cytokines and chemokines and are required for the development of adaptive immune responses. TLRs might have an important role in the pathogenesis of renal diseases: their exaggerated activation is associated with ischemic kidney damage, acute kidney injury, end-stage renal failure, acute tubulointerstitial nephritis, acute renal transplant rejection and delayed allograft function. As the results of previous studies concerning the role of TLRs in renal diseases are conflicting, further work is needed to determine the exact role of these receptors and to evaluate strategies to prevent TLR-mediated local inflammation. This Review discusses the evidence supporting a role for TLRs in contrasting bacterial infections and in causing or aggravating renal conditions when TLR activation leads to a harmful inflammatory response.
Signaling danger: Toll-like receptors and their potential roles in kidney disease
Journal of the American …, 2004
Toll-like receptors (TLR) are an emerging family of receptors that recognize pathogen-associated molecular patterns and promote the activation of leukocytes and intrinsic renal cells. Ligands of the TLR include exogenous microbial components such as LPS (TLR4), lipoproteins and peptidoglycans (TLR1,-2,-6), viral RNA (TLR3), bacterial and viral unmethylated cytosin-guanosin dinucleotide (CpG)-DNA (TLR9), and endogenous molecules including heat-shock proteins and extracellular matrix molecules. Upon stimulation, TLR induce expression of inflammatory cytokines or costimulatory molecules via the MyD88-dependent and MyD88-independent signaling pathways shared with the interleukin-1 receptors. TLR are differentially expressed on leukocyte subsets and non-immune cells and appear to regulate important aspects of innate and adaptive immune responses. Tubular epithelial
Journal of the American Society of Nephrology, 2007
Autoimmune diseases such as glomerulonephritis are exacerbated by infection. This study examined the effect of the Toll-like receptor 4 (TLR4) ligand lipid A on the development of heterologous nephrotoxic nephritis. Administration of nephrotoxic antibody resulted in significant glomerular neutrophil infiltration and albuminuria only when a TLR4 ligand was administered simultaneously. The contribution of TLR4 on renal cells and circulating leukocytes was assessed. Bone marrow chimeras were constructed with TLR4 only on renal cells or bone marrow-derived cells. The administration of nephrotoxic serum and lipid A caused a neutrophil influx in both chimeric groups greater than in sham chimeras that were totally TLR4 deficient but significantly less than in sham chimeras that were totally TLR4 sufficient. Both chimeric groups had greater albuminuria than totally TLR4-deficient sham chimeras; however, the chimeras with TLR4 only on intrinsic renal cells had significantly less than the sham positive group. In situ hybridization showed expression of TLR4 mRNA in mesangial cells and glomerular epithelial cells. For investigation of the potential mechanism by which renal cells could contribute to disease exacerbation, mesangial cells were cultured and found to express mRNA for TLR4, and stimulation of wild-type and TLR4-deficient mesangial cells with LPS caused production of CXC chemokines by wild-type cells only. Treatment of chimeras with TLR4 present only on intrinsic renal cells with anti-CXCL1 and anti-CXCL2 antibody before disease induction significantly reduced renal neutrophil infiltration. These results show that TLR4 on both circulating leukocytes and intrinsic renal cells contributes to the inflammatory effects of antibody deposition within the glomerulus, which depends at least in part on the production of CXC chemokines by intrinsic renal cells.
The role of Toll-like receptor 2 in inflammation and fibrosis during progressive renal injury
PLOS One, 2009
Tissue fibrosis and chronic inflammation are common causes of progressive organ damage, including progressive renal disease, leading to loss of physiological functions. Recently, it was shown that Toll-like receptor 2 (TLR2) is expressed in the kidney and activated by endogenous danger signals. The expression and function of TLR2 during renal fibrosis and chronic inflammation has however not yet been elucidated. Therefore, we studied TLR2 expression in human and murine progressive renal diseases and explored its role by inducing obstructive nephropathy in TLR2 2/2 or TLR2 +/+ mice. We found that TLR2 is markedly upregulated on tubular and tubulointerstitial cells in patients with chronic renal injury. In mice with obstructive nephropathy, renal injury was associated with a marked upregulation and change in distribution of TLR2 and upregulation of murine TLR2 danger ligands Gp96, biglycan, and HMGB1. Notably, TLR2 enhanced inflammation as reflected by a significantly reduced influx of neutrophils and production of chemokines and TGF-b in kidneys of TLR2 2/2 mice compared with TLR2 +/+ animals. Although, the obstructed kidneys of TLR2 2/2 mice had less interstitial myofibroblasts in the later phase of obstructive nephropathy, tubular injury and renal matrix accumulation was similar in both mouse strains. Together, these data demonstrate that TLR2 can initiate renal inflammation during progressive renal injury and that the absence of TLR2 does not affect the development of chronic renal injury and fibrosis.
Scientific Reports
Toll-like receptors (TLRs) are the key regulators of innate and adaptive immunity and are highly expressed during sepsis. Thus, studying the expression of TLRs in an animal septic model might indicate their possible association with acute kidney injury in sepsis. Seventy-two male C57BL/6J mice were used for this study. Randomly, these animals were divided into 6 groups (N = 12/group): 3 control and 3 septic groups depending on the euthanasia time (24 h, 48 h, 72 h). Septic groups underwent cecal ligation and puncture (CLP) to induce peritonitis, while control groups had a sham operation. Hematological tests were performed in serum for immune biomarkers; immunohistochemistry, morphometry and qRT-PCR analysis were used on both kidney and intestine tissues to evaluate the expression of TLR 2, 3, 4 and 7 in a septic process. At the end of each experimental period, we found that TLRs 2, 3, 4 and 7 were expressed in both tissues but there were differences between those at various time points. Also, we found that mRNA levels were significantly higher in qRT-PCR evaluation in septic groups than control groups in both kidney and intestinal tissues (p < 0.05); showing a steady increase in the septic groups as the time to euthanasia was prolonged (p < 0.05). Overall, our study provides a suggestion that TLRs 2, 3, 4 and 7 are highly expressed in the kidneys of septic mice and especially that these TLRs are sensitive and specific markers for sepsis. Finally, our study supports the diagnostic importance of TLRs in AKI and provides an insight on the contribution of septic mice models in the study of multi organ dysfunction syndrome in general.