Helper virus-free transfer of herpes simplex virus type 1 plasmid vectors into neural cells (original) (raw)

1996, Journal of virology

Herpes simplex virus type 1 (HSV-1) plasmid vectors have promise for genetic intervention in the brain, but several problems caused by the helper virus have compromised their utility. To develop a helper virus-free packaging system for these vectors, the DNA cleavage/packaging signals were deleted from a set of cosmids that represents the HSV-1 genome. Following cotransfection into cells, this modified cosmid set supported replication and packaging of vector DNA. However, in the absence of the DNA cleavage/packaging signals, the HSV-1 genome was not packaged, and consequently vector stocks were free of detectable helper virus. In the absence of helper virus, the vectors efficiently infected rat neural cells in culture or in the brain with minimal cytopathic effects. beta-galactosidase-positive cells were observed for at least 1 month in vivo, and vector DNA persisted for this period. This system may facilitate studies on neuronal physiology and potential therapeutic applications.

Sign up for access to the world's latest research.

checkGet notified about relevant papers

checkSave papers to use in your research

checkJoin the discussion with peers

checkTrack your impact