The role of n-3 dietary polyunsaturated fatty acids in brain function and ameliorating Alzheimer's disease: Opportunities for biotechnology in the development of nutraceuticals (original) (raw)

N-3 polyunsaturated fatty acid and neuroinflammation in aging and Alzheimer’s disease

Nutrition and Aging, 2015

The innate immune system of the brain is mainly composed of microglial cells, which play a key role in the maintenance of synapses and the protection of neurons against noxious agents or lesions owing to their phagocytic activity. In the healthy brain, microglia are highly motile and strongly interact with neurons either by physical contact, induction of oxidative stress or through specific mediators, such as chemokines and cytokines. In response to inflammatory insult however, microglial cells get activated and produce inflammatory cytokines. The action of cytokines on specific receptors expressed in the brain triggers the development of sickness behavior and altered cognitive and emotional processes. The effects are acute and reversible as normal behavior is restored once the synthesis of inflammatory brain cytokines returns to baseline after a few hours. However, in pathological situations, these cytokines may reach toxic levels and have irreversible consequences such as neuronal death, as observed in neurodegenerative disorders such as Alzheimer's disease. Omega-3 (n-3) polyunsaturated fatty acids (PUFAs) are essential nutrients and fundamental components of neuronal and glial cell membranes. They accumulate in the brain during the perinatal period in a dietary supply-dependent fashion. Their brain levels may diminish with age, but can be increased by diets enriched in n-3 PUFAs. Changes in the immune profile have been associated with n-3 PUFAs intake in humans and animal models. Therefore, the increasing exposure of the population to diets low in n-3 PUFAs could contribute to the deleterious effects of the chronic activation of microglia in the brain.

N-3 Polyunsaturated Fatty Acids Supplementation Enhances Hippocampal Functionality in Aged Mice

Frontiers in Aging Neuroscience, 2014

As major components of neuronal membranes, omega-3 polyunsaturated acids (n-3 PUFA) exhibit a wide range of regulatory functions, modulating from synaptic plasticity to neuroinflammation, from oxidative stress to neuroprotection. Recent human and animal studies indicated the n-3 PUFA neuroprotective properties in aging, with a clear negative correlation between n-3 PUFA levels and hippocampal deficits. The present multidimensional study was aimed at associating cognition, hippocampal neurogenesis, volume, neurodegeneration and metabolic correlates to verify n-3 PUFA neuroprotective effects in aging. To this aim 19 month-old mice were given n-3 PUFA mixture, or olive oil or no dietary supplement for 8 weeks during which hippocampal-dependent mnesic functions were tested. At the end of behavioral testing morphological and metabolic correlates were analyzed. n-3 PUFA supplemented aged mice exhibited better object recognition memory, spatial and localizatory memory, and aversive response retention, without modifications in anxiety levels in comparison to controls. These improved hippocampal cognitive functions occurred in the context of an enhanced cellular plasticity and a reduced neurodegeneration. In fact, n-3 PUFA supplementation increased hippocampal neurogenesis and dendritic arborization of newborn neurons, volume, neuronal density and microglial cell number, while it decreased apoptosis, astrocytosis and lipofuscin accumulation in the hippocampus. The increased levels of some metabolic correlates (blood Acetyl-L-Carnitine and brain n-3 PUFA concentrations) found in n-3 PUFA supplemented mice also pointed toward an effective neuroprotection. On the basis of the present results n-3 PUFA supplementation appears to be a useful tool in health promotion and cognitive decline prevention during aging.

A Novel Anti-Inflammatory Role of Omega-3 PUFAs in Prevention and Treatment of Atherosclerosis and Vascular Cognitive Impairment and Dementia

Nutrients, 2019

Atherosclerosis is an inflammatory chronic disease affecting arterial vessels and leading to vascular diseases, such as stroke and myocardial infarction. The relationship between atherosclerosis and risk of neurodegeneration has been established, in particular with vascular cognitive impairment and dementia (VCID). Systemic atherosclerosis increases the risk of VCID by inducing cerebral infarction, or through systemic or local inflammatory factors that underlie both atherosclerosis and cognition. Omega-3 and omega-6 polyunsaturated fatty acids (PUFAs) are involved in inflammatory processes, but with opposite roles. Specifically, omega-3 PUFAs exert anti-inflammatory properties by competing with omega-6 PUFAs and displacing arachidonic acid in membrane phospholipids, decreasing the production of pro-inflammatory eicosanoids. Experimental studies and some clinical trials have demonstrated that omega-3 PUFA supplementation may reduce the risk of different phenotypes of atherosclerosis ...

Polyunsaturated fatty acids, neuroinflammation and well being

Prostaglandins, Leukotrienes and Essential Fatty Acids (PLEFA), 2010

The innate immune system of the brain is principally composed of microglial cells and astrocytes, which, once activated, protect neurons against insults (infectious agents, lesions, etc.). Activated glial cells produce inflammatory cytokines that act specifically through receptors expressed by the brain. The functional consequences of brain cytokine action (also called neuroinflammation) are alterations in cognition, mood and behaviour, a hallmark of altered well-being. In addition, proinflammatory cytokines play a key role in depression and neurodegenerative diseases linked to aging. Polyunsaturated fatty acids (PUFA) are essential nutrients and essential components of neuronal and glial cell membranes. PUFA from the diet regulate both prostaglandin and proinflammatory cytokine production. n-3 fatty acids are anti-inflammatory while n-6 fatty acids are precursors of prostaglandins. Inappropriate amounts of dietary n-6 and n-3 fatty acids could lead to neuroinflammation because of their abundance in the brain and reduced well-being. Depending on which PUFA are present in the diet, neuroinflammation will, therefore, be kept at a minimum or exacerbated. This could explain the protective role of n-3 fatty acids in neurodegenerative diseases linked to aging.

Omega-3 Fatty Acids in Early Prevention of Inflammatory Neurodegenerative Disease: A Focus on Alzheimer’s Disease

BioMed Research International, 2015

Alzheimer’s disease (AD) is the leading cause of dementia and the most common neurodegenerative disease in the elderly. Furthermore, AD has provided the most positive indication to support the fact that inflammation contributes to neurodegenerative disease. The exact etiology of AD is unknown, but environmental and genetic factors are thought to contribute, such as advancing age, family history, presence of chronic diseases such as cardiovascular disease (CVD) and diabetes, and poor diet and lifestyle. It is hypothesised that early prevention or management of inflammation could delay the onset or reduce the symptoms of AD. Normal physiological changes to the brain with ageing include depletion of long chain omega-3 fatty acids and brains of AD patients have lower docosahexaenoic acid (DHA) levels. DHA supplementation can reduce markers of inflammation. This review specifically focusses on the evidence in humans from epidemiological, dietary intervention, and supplementation studies,...

Nutrigenomic approaches to study the effects of n-3 PUFA diet in the central nervous system

Nutrition and health, 2006

Deficiencies in essential, mainly omega-3 and omega-6 (n-3, n-6) long chain polyunsaturated fatty acids (LC-PUFA) result in visual and cognitive impairment and disturbances in mental functions in animals and could be the main reason for the increasing incidence of different mental disorders in humans. Traditional approaches cannot give us a detailed picture on how dietary lipids exert their effects, because they focus on only a few genes or biomarkers. Dietary lipids not only influence the biophysical state of the cell membranes but, via direct and indirect routes, they also act on multiple pathways including signalling and gene and protein activities. Therefore, to understand the molecular basis of the effects and roles of n-3 PUFA in the central nervous system global screening techniques such as DNA- or protein microarrays were used to assess the changes, in a global way, at the transcriptome and at the proteome level. With DNA microarrays we found that cholesterol and fish oil (h...